您现在的位置是:主页 > 电阻 > 正文

半导体的电阻?

电阻 2024-08-26 16:51

一、半导体的电阻?

半导体是导电能力介于导体和绝缘体之间的物质.它的重要特性表现在以下几个方面: (1)热敏性 半导体材料的电阻率与温度有密切的关系.温度升高,半导体的电阻率会明显变小.例如纯锗(Ge),温度每升高10度,其电阻率就会减少到原来的一半. (2)光电特性 很多半导体材料对光十分敏感,无光照时,不易导电;受到光照时,就变的容易导电了.例如,常用的硫化镉半导体光敏电阻,在无光照时电阻高达几十兆欧,受到光照时电阻会减小到几十千欧.半导体受光照后电阻明显变小的现象称为“光导电”.利用光导电特性制作的光电器件还有光电二极管和光电三极管等. 近年来广泛使用着一种半导体发光器件--发光二极管,它通过电流时能够发光,把电能直接转成光能.目前已制作出发黄,绿,红,蓝几色的发光二极管,以及发出不可见光红外线的发光二极管. 另一种常见的光电转换器件是硅光电池,它可以把光能直接转换成电能,是一种方便的而清洁的能源. (3)搀杂特性 纯净的半导体材料电阻率很高,但掺入极微量的“杂质”元素后,其导电能力会发生极为显著的变化.例如,纯硅的电阻率为214×1000欧姆/厘米,若掺入百万分之一的硼元素,电阻率就会减小到0.4欧姆/厘米.因此,人们可以给半导体掺入微量的某种特定的杂质元素,精确控制它的导电能力,用以制作各种各样的半导体器件.

二、电阻属于半导体吗?

电阻不属于半导体。是导体。

半导体是常温下导电性能介于导体与绝缘体之间的材料。

我们通常把导电性差的材料,如煤、人工晶体、琥珀、陶瓷等称为绝缘体。而把导电性比较好的金属如金、银、铜、铁、锡、铝等称为导体。

半导体在集成电路、消费电子、通信系统、光伏发电、照明应用、大功率电源转换等领域得到广泛应用。

以氮化镓为代表的新型半导体材料在工业方面的应用越来越多。新型半导体材料表现为其结构稳定,拥有卓越的电学特性,而且成本低廉,可在制造现代电子设备中广泛使用。

三、半导体和电阻区别?

半导体和电阻是电子元件中的两种不同类型,它们有以下区别:

1. 物理性质:半导体是一种材料,它的导电性介于导体和绝缘体之间。它的导电性在常温下较弱,但可以在施加电场或温度变化等条件下改变。电阻是一种电路元件,用于限制电流流动的能力。它具有阻碍电流通过的特性。

2. 功能:半导体主要用于控制和调节电流的流动,广泛应用于电子器件,如晶体管、二极管和集成电路等。它们可以根据控制电压或输入信号来改变电流的大小和方向。电阻主要用于限制电流的流动,在电路中起到稳定电流和调节电压的作用。

3. 材料特性:半导体常用的材料包括硅(Si)和锗(Ge),它们具有特殊的能带结构和电子控制能力。电阻可以采用不同的材料制成,如碳膜电阻、金属电阻和可变电阻等,具有不同的电阻值和功率承受能力。

4. 应用范围:半导体在电子领域的应用非常广泛,包括计算机、通信、光电子、能源和医疗设备等。电阻用于各种电路和电子设备中,如电源、电路保护、信号调节和传感器等。

总的来说,半导体是一种特殊材料,用于控制电流流动,而电阻是一种电路元件,用于限制电流的流动。它们在电子组件和电路中扮演着不同的角色。

四、半导体的电阻率分类?

半导体电阻率

半导体的电阻率介于金属和绝缘体之间:室温时约在1mΩ·cm~1GΩ·cm之间(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的)。

基本信息

晶向

电阻率与晶向有关。

对于各向异性的晶体,电导率是一个二阶张量,共有27个分量。

特别的,对于Si之类的具有立方对称性的晶体,电导率可以简化为一个标量的常数(其他二阶张量的物理量都是如此)。

载流子

电阻率的大小决定于半导体载流子浓度n和载流子迁移率μ:ρ=1/ nqμ。

对于掺杂浓度不均匀的扩散区的情况,往往采用平均电导率的概念;在不同的扩散浓度分布(例如高斯分布或余误差分布等)情况下,已经作出了平均电导率与扩散杂质表面浓度之间的关系曲线,可供查用。

温度

决定电阻率温度关系的主要因素是载流子浓度和迁移率随温度的变化关系。

在低温下

由于载流子浓度指数式增大(施主或受主杂质不断电离),而迁移率也是增大的(电离杂质散射作用减弱之故),所以这时电阻率随着温度的升高而下降。

在室温下

由于施主或受主杂质已经完全电离,则载流子浓度不变,但迁移率将随着温度的升高而降低(晶格振动加剧,导致声子散射增强所致),所以电阻率将随着温度的升高而增大。

在高温下

这时本征激发开始起作用,载流子浓度将指数式地很快增大,虽然这时迁移率仍然随着温度的升高而降低(晶格振动散射散射越来越强),但是这种迁移率降低的作用不如载流子浓度增大的强,所以总的效果是电阻率随着温度的升高而下降。

本征激发温度

半导体开始本征激发起重要作用的温度,也就是电阻率很快降低的温度,该温度往往就是所有以pn结作为工作基础的半导体器件的最高工作温度(因为在该温度下,pn结即不再存在);该温度的高低与半导体的掺杂浓度有关,掺杂浓度越高,因为多数载流子浓度越大,则本征激发起重要作用的温度——半导体器件的最高工作温度也就越高。所以,若要求半导体器件的温度稳定性越高,其掺杂浓度就应该越大。

五、可调电阻是半导体吗?

可调电阻是导体.半导体是处于导体与绝缘体间的一种物质,在物理中有明确的量化指标.我们通常所指的电阻其量化值在导体范围内,常用的电阻(又称电阻器)是导体而不是半导体.

六、半导体是纯电阻吗?

半导体不是纯电阻,因为电阻是导体。半导体是处于导体与绝缘体间的一种物质,

纯电阻就是指电能全部转化为内能,而不转化为其他形式的能量的电路,例如电炉,热得快,白炽灯(但日光灯不是),电烙铁,熨斗,等等,它们只是发热。它们都是纯电阻。除了发热以外,还对外做功,所以这些是非纯电阻。

七、d电阻是半导体吗?

电阻是导体.

半导体是处于导体与绝缘体间的一种物质,在物理中有明确的量化指标.我们通常所指的电阻其量化值在导体范围内,常用的电阻(又称电阻器)是导体而不是半导体.

r是电阻,d是二极管,Ic是半导体元件产品的统称。包括:1.集成电路板(integrated circuit,缩写:IC); 2.二、三极管;3.特殊电子元件。。

IC,即集成电路是采用半导体制作工艺,在一块较小的单晶硅片上制作上许多晶体管及电阻器、电容器等元器件,并按照多层布线或遂道布线的方法将元器件组合成完整的电子电路。它在电路中用字母“IC”(也有用文字符号“N”等)表示。

八、半导体电压与电阻关系?

半导体二级管的电压只与二级管内阻相关,三极管电压则与它的偏流电阻的大小相关。

九、光敏电阻光照在半导体的哪里?

光敏电阻器通常由光敏层、玻璃基片(或树脂防潮膜)和电极等组成。光敏电阻器在电路中用字母“R”或“RL”、“RG”表示。

通常,光敏电阻器都制成薄片结构,以便吸收更多的光能。当它受到光的照射时,半导体片(光敏层)内就激发出电子—空穴对,参与导电,使电路中电流增强。为了获得高的灵敏度,光敏电阻的电极常采用梳状图案,它是在一定的掩膜下向光电导薄膜上蒸镀金或铟等金属形成的。

十、半导体的电阻率主要分类?

半导体电阻率

半导体的电阻率介于金属和绝缘体之间:室温时约在1mΩ·cm~1GΩ·cm之间(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的)。

基本信息

晶向

电阻率与晶向有关。

对于各向异性的晶体,电导率是一个二阶张量,共有27个分量。

特别的,对于Si之类的具有立方对称性的晶体,电导率可以简化为一个标量的常数(其他二阶张量的物理量都是如此)。

载流子

电阻率的大小决定于半导体载流子浓度n和载流子迁移率μ:ρ=1/ nqμ。

对于掺杂浓度不均匀的扩散区的情况,往往采用平均电导率的概念;在不同的扩散浓度分布(例如高斯分布或余误差分布等)情况下,已经作出了平均电导率与扩散杂质表面浓度之间的关系曲线,可供查用。

温度

决定电阻率温度关系的主要因素是载流子浓度和迁移率随温度的变化关系。

在低温下

由于载流子浓度指数式增大(施主或受主杂质不断电离),而迁移率也是增大的(电离杂质散射作用减弱之故),所以这时电阻率随着温度的升高而下降。

在室温下

由于施主或受主杂质已经完全电离,则载流子浓度不变,但迁移率将随着温度的升高而降低(晶格振动加剧,导致声子散射增强所致),所以电阻率将随着温度的升高而增大。

在高温下

这时本征激发开始起作用,载流子浓度将指数式地很快增大,虽然这时迁移率仍然随着温度的升高而降低(晶格振动散射散射越来越强),但是这种迁移率降低的作用不如载流子浓度增大的强,所以总的效果是电阻率随着温度的升高而下降。

本征激发温度

半导体开始本征激发起重要作用的温度,也就是电阻率很快降低的温度,该温度往往就是所有以pn结作为工作基础的半导体器件的最高工作温度(因为在该温度下,pn结即不再存在);该温度的高低与半导体的掺杂浓度有关,掺杂浓度越高,因为多数载流子浓度越大,则本征激发起重要作用的温度——半导体器件的最高工作温度也就越高。所以,若要求半导体器件的温度稳定性越高,其掺杂浓度就应该越大。