正弦电路中感抗与角频率成什么比?
一、正弦电路中感抗与角频率成什么比?
正弦电路中,感抗与角频率成正比,即感抗XL等于2πfL,f是频率的单位赫芝,L是电感的单位亨利。XL是感抗的单位欧姆。也就是说,电感在交流电路中的感抗值与电感量成正比,与电源的频率也成正比。这一点与容抗正好相反,容抗值与电容量成反比,与电源频率成反比。
二、电路中的正弦量?
只是正弦量的两种不同的表示方法。
u=U·cos(ωt+ψ?)是正弦量的瞬时值表达式,是最基本的定义式。给出了三要素(最大值、角频率、初相位),U就是时间的函数。电工学中,也经常用旋转矢量来表示它。当角频率不变的情况下,旋转矢量以相同的角速度旋转。这样一来,只要初始位置(即初相位)确定以后,电路中各个正弦量之间的相互关系,就不会随时间发生变化。极坐标正好可以用来表示正弦量的大小和初相位——用极坐标的模表示正弦量的大小,幅角表示正弦量的初相位。这就是相量。ú=U·∠ψ的U是正弦量的大小(可以是峰值,常用的是有效值),ψ是正弦量的初相位。相量表示中,没有角频率的值。由此在运用相量分析和计算电工问题时,应确认有关正弦量的频率是相同的。三、频率稳定的正弦波振荡电路?
一般情况下,频率稳定的正弦波振荡电路
是在恒定温度下的晶体振荡器。
四、rc文氏桥正弦振荡电路频率?
1、电阻电容的精度。
2、环境温度。
3、可变电容的调节稳定与显示表盘的对应精度。还有一些串扰的影响都是其振荡器频率稳定影响因素。
正弦波振荡器的振荡部分由RC组成,则振荡角频率由乘积RC的倒数组成,再除以2π就得到振荡频率。
正弦波振荡器的振荡部分由LC组成,则振荡角频率由乘积LC再开方的倒数组成,再除以2π就得到振荡频率。
扩展资料:
对于RC振荡电路来说,增大电阻R即可降低振荡频率,而增大电阻是无需增加成本的。常用LC振荡电路产生的正弦波频率较高,若要产生频率较低的正弦振荡,势必要求振荡回路要有较大的电感和电容,这样不但元件体积大、笨重、安装不便,而且制造困难、成本高。因此,200kHz以下的正弦振荡电路,一般采用振荡频率较低的RC振荡电路
五、正弦交流电路的频率越高?
阻抗与交流电频率的关系比较复杂,需要具体问题具体分析,一般来说,如果电路呈感性电路,那么频率越大,相应的阻抗也越大;如果电路呈容性电路,那么频率越大,相应的阻抗就越小;如果电路呈电阻性电路,那阻抗与频率就没有关系了。交流电流的阻抗有三种情况,分别介绍如下:
对于纯电阻类的元器件,阻抗与交流电的频率是没有关系的,阻抗就等于电阻的电阻值,用式子描述就是:对于纯电感类的元器件,阻抗与交流电的频率ω成正比,频率越大,阻抗也就越大。
用式子描述就是:对于纯电容类的元器件,阻抗与交流电的频率成反比,频率越大,阻抗也就越小,用式子描述就是:这里的C是电容,j表示虚数,表示电容类的阻抗的方向与纯电阻的方向垂直且滞后纯电阻。
所有的电器元件及电路,都可以分解成电阻,电容和电感,分别计算后,得出其复阻抗,如果是单纯的串联电路,可以得到:Z=ZR+ZL+ZC在这种情况下,阻抗与交流电频率的关系就不简单成正比或者反比了,需要具体问题具体分析了。
如果是并联或者其它更复杂的电路,那么总阻抗与电流频率的关系也就更复杂了,需要通过计算才能得出在某一电路中阻抗与频率的关系了。
一般来说,如果电路呈感性电路,那么频率越大,相应的阻抗也越大;如果电路呈容性电路,那么频率越大,相应的阻抗就越小;如果电路呈电阻性电路,那阻抗与频率就没有关系了。
六、正弦电流频率?
就是正弦交流电在一秒钟内电流方向改变的次数。对于正弦交流电,电流与时间的关系是I=Asin(wt+x) 其中w/2兀等于频率
七、rc正弦波振荡电路频率的误差?
由于RC正弦波振荡电路稳定一般,所以其频率误差为正负百分之十。
八、RC正弦波振荡电路中哪些参数与振荡频率有关?
正弦波振荡器的振荡部分由RC组成,则振荡角频率由乘积RC的倒数组成,再除以2π就得到振荡频率。正弦波振荡器的振荡部分由LC组成,则振荡角频率由乘积LC再开方的倒数组成,再除以2π就得到振荡频率。 RC振荡一般受以下条件影响:1、 环境温度;2、电源的稳定性;3、电阻与电容的稳定性。
九、正弦稳态电路中电容怎么求?
答:由于交流电,通路可以通过电容器,与频率有关,相匹配高容量,低频率。频率=k(C/L)1/2。k是单位匹配系数。
十、正弦交流电路的频率越高阻抗越大?
阻抗与交流电频率的关系比较复杂,需要具体问题具体分析,一般来说,如果电路呈感性电路,那么频率越大,相应的阻抗也越大;如果电路呈容性电路,那么频率越大,相应的阻抗就越小;如果电路呈电阻性电路,那阻抗与频率就没有关系了。