您现在的位置是:主页 > 电压 > 正文

可控硅是电流控制,还是电压控制元件?

电压 2024-08-06 22:27

一、可控硅是电流控制,还是电压控制元件?

可控硅、GTO是电流触发,其中可控硅触发导通后要等到电流过0时才关断;GTO称之为可关断可控硅,可以在有电流时关断。MOSFET和IGBT是电压控制器件,类似于场效应管,可通过栅极电压控制其导通和关断,开关速度高于GTO,由于MOSFET的耐压水平不能再继续提高,后推出场效应管与双极型管结合的器件IGBT。

它们共同的作用就是可以用较小的电流(或电压)去控制较大的电流,同时都具有单向导电性,均可作为整流和逆变元件使用, 但相比之下,可控硅的应用范围相对狭窄,但因为这些器件中,可控硅是最廉价的,工艺成熟,可做成高压、大电流,所以在整流、大功率的同步逆变、调功等装置中还是有较大优势。IGBT与GTO、MOSFET器件相比在开关速度、耐压、驱动功率上有更优异的特性,所以被广泛应用在变频器、有源滤波和补偿、逆变等领域。

二、为什么说三极管是电流控制元件,场效应管是电压控制元件?

电流控制型的三极管,是双极型三极管,指用p型(三价的)和n型(四价的)两种半导体材料构成的,是有两个pn结的三极管。

这种三极管大都用于分立器件和大功率器件里,作非线性的信号放大,模拟信号处理,测量温度,计算对数,求自然对数的幂指数等。如果把双极型的三极管连接成共发射极电路,确实可以实现电流放大的作用,电压控制型的三极管,是指单极型的绝缘栅型的三极管,也叫场效应mos管或者是mosFET。

三、气动控制元件有哪些?

气动控制元件主要包括以下几种:压力阀:用于调节和控制气体压力。减压阀:用于降低气体压力。增压阀:用于增加气体压力。流量阀:用于控制气体的流量。单向节流阀:用于控制气体的单向流动。排气节流阀:用于控制气体的排放。快速排气阀:用于快速排放气体。方向阀:用于控制气体的流向。电磁阀:用于控制气体的电磁开关。气控阀:用于控制气体的控制信号。人控阀:用于控制气体的手动信号。机控阀:用于控制气体的机械信号。单向阀:用于控制气体的单向流动。梭阀:用于控制气体的交替流动。双压阀:用于控制气体的双压流动。比例阀:用于控制气体的比例流动。这些气动控制元件可以组成各种复杂的气动控制系统,实现各种复杂的气动控制功能。

四、执行元件和控制元件区别?

执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。

控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为村力控制阀、流量控制阀和方向控制阀。压力控制阀又分为益流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。

五、遥控飞机有哪些控制元件?

玩遥控飞机已成了现今许多人的一大爱好,由于它的具有一定的挑战性,通常要想熟练的掌握遥控技术需要经过长久的训练和实际操作经验.遥控技术在科技的发展中也不断的发展.由以前的有线变成无线的.这种无线飞机通常是有以下三个元件来控制的: 1.遥控器

俗称发射,对于不同阶段的遥控飞机,亦要选择不同之遥控器。基本为四动作:油门、尾舵、升降舵、副翼。如要为飞机增添多余动作,例如起落架、襟翼等,则相对使用更多动作之遥控器。对于引擎动力遥控飞机,遥控器上亦有熄火开关,以防止降落滑行后或是有紧急状况时可以将引擎熄火,避免发生伤害事件。目前中高阶遥控器功能多样,包含微调记忆、动作大小、陀螺仪控制等,均可以遥控器操作。 2.接收机

接收机是接收遥控器讯号的设备,大小约如火柴盒大。接收机将摇控器发射之讯号接收后,经过处理以控制飞机动作。接收机需配合遥控器,假如遥控器六动,接收器四动,则遥控器剩下两动则均无功能。 3.伺服机

伺服机是受接收机控制,调整升降舵、方向舵、副翼等各舵面的设备。随着飞机大小的不同,有各种不同的规格。伺服机的用途不只是控制舵面,举凡遥控模型有任何动态上的要求(起落架等),均可以伺服机作为动作来源。

六、先导式控制元件的工作原理?

  先导式控制元件,通电时,依靠电磁力提起元件阀杆,导阀口打开,此时电磁阀上腔通过先导孔卸压,在主阀芯周围形成上低下高的压差,在压力差的作用下,流体压力推动主阀芯向上移动将主阀口打开;断电时,在弹簧力和主阀芯重力的作用下,阀杆复位,电磁阀上腔压力升高,流体压力推动主阀芯向下移动,主阀口关闭。

七、液压元件中控制元件分几种?

压力控制阀

(1)压力控制阀有:溢流阀、电磁溢流阀、卸荷溢流阀、单向溢流阀和减压阀、单向减压阀以及顺序阀和单向顺序阀等。

(2)顺序阀的范围中又分为直控顺序阀、远控顺序阀、卸荷阀、直控单向顺序阀、远控单向顺序阀、直控平衡阀和远控平衡阀等七种,还有压力继电器,以及各种压力控制阀,在各类液压传动系统中,按不同使用条件和特性要求,用于各类液压系统中。

2、方向控制阀

方向控控制阀包括单向阀、液控单向阀、电磁换向阀、电磁球阀、电磁换向阀和手动换向阀以及手动旋转阀等多种。

3、流量控制阀

流量控制阀有:节流阀、单向节流阀、调速阀、单向调速阀和行程节流阀以及单向行程节流阀、单向行程调速阀等。

八、液压缸控制元件有什么?

液压控制元件是在液压传动系统中用来控制工作介质的压力高低、流动方 向和流量大小的元件。液压控制元件的种类虽然很多,但它们在结构上都是由阀体、阀芯及驱动阀芯运动的元器件组成的阀式结构,液压控制元件又称为液压控制阀,简称液压阀。[1]

液压控制阀是液压传动系统的重要组成部分,其性能直接影响着液压传动系统的工作性能。因此,在液压传动系统中所用的液压阀应该满足以下要求:

① 结构要简单紧凑,安装、调试要方便,通用性或互换性好。

②动作灵敏、可靠,工作时冲击和振动小。

③液压油流过时压力损失小。

④密封性能好,内泄漏小,无外泄漏。

⑤被控参数(压力、流量)要稳定,受外界干扰时变化量小。那

⑥使用、维护简单方便,可靠性好,使用寿命长。

九、场效应管是什么控制元件?

场效应管是电压控制器件,它通过V(栅源电压)来控制I(漏极电流);

场效应管的控制输入端电流极小,因此它的输入电阻(10~10Ω)很大。

它是利用多数载流子导电,因此它的温度稳定性较好;

它组成的放大电路的电压放大系数要小于三极管组成放大电路的电压放大系数。

十、如何快速识别液压系统图中的控制元件?

液压技术在工程机械中的广泛应用,以及机电液一体化产品的迅速发展,要求设备设计人员、设备管理人员、设备维修人员知识和技能面不能过于单一。从液压技术方面来说,若要做好机电液一体化设备的设计、管理和维修工作,能够看懂液压系统原理图就成为一项基本的技能要求。

液压系统原理图是用液压元件的图形符号来绘制的,液压元件的种类繁多,其中以控制元件为最多,同类元件的图形符号又较为相似,很容易混淆,因此,能够正确快速地识别液压系统控制元件图形符号的含义,对于分析和设计液压系统都有着十分重要的意义。

1、液压系统原理图及快速识别控制元件的依据

1.1液压系统原理图

如果图纸是工程界的语言,液压系统原理图就是液压技术领域的语言。液压系统原理图是为了便于阅读、分析、设计和绘制,用规定的线条和符号来表达液压系统工作原理的图形。按照规定,液压元件的图形符号只表示元件的功能,不表示元件的结构和参数,并以元件的静止状态或零位状态来表示。

一个完整的液压系统由五部分组成,分别为工作介质、动力部分、执行部分、控制部分、辅助部分。工作介质在液压系统中是用来传递运动和动力的,常用的工作介质为液压油。动力部分的核心元件为液压泵,它将原动机所输出的机械能转换成液体压力能输入液压系统。执行部分的核心元件为液压缸或液压马达,它们将液体的压力能转换成机械能以驱动工作机构。

控制部分主要由三大类控制元件来组成,用来控制或调节液压系统中油液的压力、流量或方向,以保证执行装置完成预期工作。在目前普遍采用的液压传动系统中,液压系统的各种运动主要是由液压控制元件控制液压执行元件改变运动的方向、承载的能力、运动的速度来实现的。控制元件主要包括方向控制元件、压力控制元件、流量控制元件。辅助元件将前面几部分连接在一起,组成一个系统,在液压系统中主要起储油过滤、测量和密封等作用。

1.2快速识别控制元件的依据

液压系统原理图作为液压技术领域的语言,其识读是液压技术相关人员必备的技能。任何一项技能均有其核心技能点及提高相应技能要突破的重难点。液压系统中控制元件的识别就是系统图识读过程中的核心和难点。液压元件结构及工作原理与其图形符号间存在象形关系,同类型的图形符号具。

有较突出的相似点和明显区别点,经过对最易混淆的控制元件的纵向和横向分析,提炼得到的元件图形符号特征可以使液压相关技术人员迅速的识别控制元件类别。

2、液压系统原理图中控制元件的快速识别

下图为YT 4543型组合机床动力滑台液压系统原理图,组合机床是由通用部件和某些专用部件所组成的高效率和自动化程度较高的专用机床。动力滑台是组合机床的一种通用部件。图1YT4543型组合机床动力滑台液压系统可以实现快进、一工进、二工进、死挡铁停留、快退、停止的工作循环。笔者就以它为例来说明快速识别液压系统原理图中三大类控制元件的方法。

该液压系统原理图中除辅助元件外共包含13个元件,其中一个动力元件--单向变量液压泵,一个执行元件--单出杆双作用缸杆固定液压缸,其余11个均为液压控制元件。

2.1方向控制元件的快速识别

方向控制元件用来控制液压系统的油流方向,接通或断开油路,从而控制执行机构的启动、停止或改变运动方向,方向控制阀分为单向阀和换向阀两大类。

单向阀图形符号特征:小圆圈顶着小括号为普通单向阀,如

;若普通单向阀外加方框和表示液控的虚线则为液控单向阀,如

。由此可确定原理图中元件2、5、10为普通单向阀,且组合元件6中含有两个普通单向阀。

换向阀图形符号特征:几位几通及操作阀芯方式为换向阀图形符号的构成要素,几位往往对应几个方框(换向阀至少为两位即图形符号包含两个方框),几通则对应一个方框和箭头或⊥的几个交点,表示操纵阀芯移动方式的图形符号也非常形象,分为机动、手动、电磁控、液控、电液控等。如

为两位两通电磁换向阀,弹簧复位。

由此可确定原理图中元件6、11、12为换向阀,分别为三位四通电液换向阀、两位两通机动换向阀、两位两通电磁换向阀。其中三位四通电液换向阀为复合阀,复合阀在液压系统原理图中表达出基本元件组成的时候基本元件要用虚线框起来。

2.2流量控制元件的快速识别

在液压系统中,各种执行元件的有效面积一般都是固定不变的,如液压缸的内腔直径等,那么执行元件的运动速度就取决于输人到执行元件内的液体流量的大小。流量控制元件就发挥着控制油液流量的作用。流量控制元件常用的为节流阀和调速阀。

节流阀图形符号特征:不可调流量节流阀图形符号为括号背靠背中间有管道,如

;可调流量节流阀图形符号在不可调流量节流阀图形符号基础上加上液压系统中通用的可调符号即斜箭头,如

。由此可确定原理图中组合元件三位四通电液换向阀6中含有两个节流阀。

调速阀图形符号特征:在可调流量节流阀图形符号的基础上加一方框,如

。由此可确定原理图元件中7、8为调速阀。

2.3压力控制元件的快速识别

压力控制阀对液体压力进行控制或利用压力作为信号来控制其他元件动作,以满足执行元件对力、速度转矩等的要求。压力控制阀按照其功能和用途不同可分为溢流阀、减压阀、顺序阀、压力继电器等。

溢流阀图形符号特征:方框内箭头与表示进出油口的线段错开(意为初始状态下进出油口不通),虚线从箭头的起始位置引出(意为控制油液从进油口引出),无虚线引出油箱(意为采用内泄式),出口一般通油箱。如

。由此可判断原理图中元件3为溢流阀。

顺序阀图形符号特征:方框内箭头与表示进出油口的线段错开(意为初始状态下进出油口不通),虛线从箭头的起始位置引出(意为控制油液从进油口引出),有虚线引出油箱(意为采用外泄式),出口连接工作油路。如

由此可判断原理图中元件4为顺序阀。

减压阀图形符号特征:方框内箭头连接表示进出油口的线段(意为初始状态下进出油口连通),虚线从箭头的终止位置引出(意为控制油液从出油口引出),有虚线引出油箱(意为采用外泄式),出口连接工作油路。如

。压力继电器是一种将液体压力信号转换成电信号的电液控制元件,图形符号特征:方框一边为液控符号,相对的一边为复位弹簧,方框内有倒三角布置的三点,下方和靠近液控符号的两点由线段相连。如

。压力继电器的图形符号是液压系统元件图形符号中较独立特殊的一个,比较容易判别。可以迅速识别出原理图中元件9为压力继电器。

压力控制元件中溢流阀、压力阀和顺序阀的图形符号非常相像,容易混淆。在识记过程中对图形符号、工作原理、实际结构及其在液压系统中的作用几者多做横向比较和联想,会达到事半功倍、一举多得的效果。有关图形符号和工作原理象形联系方面的问题此处不再详细介绍,本文主要说明各阀图形符号的特征,以便迅速的区分它们。

溢流阀、压力阀和顺序阀三阀图形符号都有一方框,方框上下或左右有表示进出油口的线段,中间有带线段的箭头可表示进出油口通流状态,箭头的位置(进出油口的通断情况)可有控制油液的压力与阀芯上的弹簧力来平衡调节,三阀都具有确定的排漏油方式。在识记和辨别这三类压力阀图形符号时可以从这几点人手来迅速掌握判别技巧,如方框内带箭头线段与方框外两线段共线的为减压阀图形符号,反之方框内带箭头线段与方框外两线段不共线的为溢流阀或顺序阀图形符号,其中箭头所指线段连油箱的为溢流阀图形符号,箭头所指线段不连油箱且有虚线引出油箱的为顺序阀图形符号。

识读液压系统原理图是对液压传动系统进行分析、设计和绘制的基础,是进行机电液设备维修必备的基本技能之一。如果能抓住液压元件图形符号的突出特征就可以迅速的判断其类型,这样在分析、设计、绘制液压系统时就能减少出错率,提高效率。笔者将液压控制元件的图形符号进行深入的纵向分析和横向比较,总结出各类元件的突出特征,依据其特征能在液压系统原理图中迅速的判别其类型,有助于更迅速的进行液压系统的分析、设计、绘制,能减少出错率,提高效率。