电弧接地过电压的产生机理和限制措施是什么?
一、电弧接地过电压的产生机理和限制措施是什么?
弧光接地过电压的危害及其限制措施
弧光接地过电压又称间隙性弧光接地过电压,当中性点非直接接地系统发生单相间隙性弧光接地故障时,由于不稳定的间歇性电弧多次不断的熄灭和重燃,在故障相和非故障相的电感电容回路上会引起高频振荡过电压,非故障相的过电压幅值一般可达3.15~3.5倍相电压,这种过电压是由于系统对地电容上电荷多次不断的积累和重新再分配形成的,是断续的瞬间发生的且幅值较高的过电压,对电力系统的设备危害极大,主要表现在以下几个方面:
⑴随着电网的发展,具有固体绝缘的电缆线路应用较多,由于固体绝缘击穿的积累效应,当系统发生单相弧光接地时,在3.5倍过电压的持续作用下,造成电气设备绝缘的积累性损伤,在非故障相的绝缘薄弱环节造成对地击穿,进而发展成为相间短路事故。
⑵弧光接地过电压使电压互感器饱和,容易激发铁磁谐振,导致过电压或电压互感器爆炸事故。
⑶弧光接地过电压的能量由电源提供,持续时间较长,当过电压超过避雷所能能承受的400A 2ms的能量时,就会造成避雷器的爆炸事故。
因220KV及以下电压等级的系统中,系统的绝缘水平主要决定于雷电过电压(大气过电压),故这一电压等级的避雷器主要用于限制雷电过电压,要求3.5倍以下的过电压不动作,而弧光接地过电压一般不超过3.5倍,避雷器对弧光接地过电压根本不能限制。目前我国限制弧光接地过电压的措施主要有中性点直接接地或经小电阻接地,中性点采用经消弧线圈或自动调谐的消弧线圈接地,采用消弧及过电压保护装置
⑴中性点直接接地或经小电阻接地,弧光接地过电压问题并不突出,一般情况下最大过电压不超过2.5倍的相电压,但扩大了单相接地时的故障电流,加剧了故障点的烧伤、牺牲了对用户供电的可*性。
⑵采用消弧线圈或自动调谐的消弧线圈。由于消弧线圈的电感电流补偿了系统的电容电流,降低了故障点的残流,有利于接地电弧的熄灭,避免了长时间燃弧而导致相间弧光短路的可能性。同时可带单相接地运行,提高了供电可*性,但现行消弧线圈设计自动跟踪或自动调谐是在电网工频下完成的。在稳定电弧接地和金属性接地阶段,通过故障点电流才是经消弧线圈自动跟踪补偿(或自动调谐)后的残流,此时非故障相上发生的过电压较低,最大才达2.3倍相电压,而间歇性弧光接地时产生的过电压已不再是稳态的正弦波,而以高次谐波为主,显然,当频率增加时,对于电容电流是增加的,而电感电流是减少的,无法补偿谐波电流。
⑶采用消弧及过电压保护装置
装置主要由三相组合式过电保护器TBP,可分相控制的高压真空接触器JZ,微机控制器ZK,高压限流熔断器组件FUR及带有辅助二次绕组的电压互感器PT等组成,一旦系统发生单相间隙性弧光接地过电压微机控制器ZK立即判别故障类型与相别并向故障相的真空接触器JZ发出动作指令,真空接触器JZ在0.1S左右完成合闸动作,间隙性弧光接地随之被转化为金属性接地,弧光接地过电压消失,真空接触器动作之前的过电压由三相组合式过电压保护器TBP限制在较低的数值,由于时间短,能量不超过TBP允许的400A2ms的能量指标,仍可保证TBP的安全,该装置限制过电压的机理与电网对电容电流的大小无关,因而其保护性能不随电网运行方式的改变而改变。
二、对于断续电弧接地过电压来讲,可以采取哪些防护措施?
弧光接地过电压的危害及其限制措施 弧光接地过电压又称间隙性弧光接地过电压,当中性点非直接接地系统发生单相间隙性弧光接地故障时,由于不稳定的间歇性电弧多次不断的熄灭和重燃,在故障相和非故障相的电感电容回路上会引起高频振荡过电压
三、接地电弧是什么?
接地电弧是弧光接地就是某相电压经过弧光与大地短路,一般出现在高压的无中性点接地系统中。弧光接地故障产生的原因很多,总的情况都是当金属或者其他导体靠近高压线,距离达到了放电距离,然后产生电弧放电,当距离足够小、电弧不能自动熄灭时就产生弧光接地。
间歇性电弧接地是指在中性点不接系统中,当发生一相对地短路故障,常出现电弧,由于系统中存在电容和电感,此时可能引起线路某一部分的振荡,当电流振荡零点或工频零点时,电弧可能暂时熄灭,之后事故相电压升高后,电弧则可能重燃,这种现象为间歇性电弧接地。
四、过电压和过电流哪个会产生电弧?
过电压会产生电弧,过电流会烧坏电气设备和电缆线。
所谓的电压指的是二端的电势之差,单位为v,kv等。所谓的电流是指闭合线路中电子的流动形成了电流,其单位为a,ka等。
过电压严重时,会造成绝缘介质被击穿,从而产生电孤。而过电流时会产生高温而烧坏用电设备和线路。
五、内部过电压接地原因和措施?
内部过电压是由于操作(合闸,拉闸)事故(接地、断线等)或其它原因,引起电力系统的状态发生突然变化,将出现从一种稳态转变为另一种稳态的过渡过程,在这个过程中可能产生对系统有危险的过电压,这些过电压是系统内部电磁能的振荡和积聚所引起的,所以叫内部过电压。
这可分操作过电压和谐振过电压、前者是产生于系统操作或故障,后者是电网中电容元件和电网中电感元件(特别是带铁芯的铁磁电感元件),参数的不利组合谐振而产生的。
六、弧光接地过电压是什么意思?
弧光接地过电压又称间隙性弧光接地过电压,当中性点非直接接地系统发生单相间隙性弧光接地故障时,由于不稳定的间歇性电弧多次不断的熄灭和重燃,在故障相和非故障相的电感电容回路上会引起高频振荡过电压,非故障相的过电压幅值一般可达3.15~3.5倍相电压,这种过电压是由于系统对地电容上电荷多次不断的积累和重新再分配形成的,是断续的瞬间发生的且幅值较高的过电压,对电力系统的设备危害极大。
七、输电线路的感应雷过电压的机理?
雷电过电压是大气中带有大量正电荷雷云与带负电荷雷云相遇时,发生雷云放电而引起的过电压。雷电过电压可分为直击雷过电压和感应过电压。
直接雷过电压是雷云直接对设备、构件等导体的放电产生的,而感应过电压则是电磁场的急剧变化而产生的
八、简述石墨电弧法制备碳纳米管的机理?
通过来自于等离子体中的碳原子簇(wt)%比例均匀混合在石墨棒中) ,阳极用高纯石插入反应活性较高的两端封闭管,封闭生长机理可石墨电极,放电电流70A,阳极电极的放电角度为40以成功地解释单壁碳纳米管的生长过程,但却不能~50° ,H e气压力为1. 33 X 104 Pa,制备出了大量高解释多壁碳纳米管的生长和结构。原因是对于多纯度、大产量、直径更小的单壁碳纳米管。
九、电弧炉炉壳接地是什么原理?
所谓电弧炉炉壳的接地,是人有意或非有意的导电连接,使电路或者电气设备直接接大地或间接的接代替大地且比较大的导电体。
这样做的目的,把电路或者电气设备外壳的电流引导入地和流出大地,使得被连接到地的导体具有与大地同等电位或相近电位,从而可防止供电系统的短路电流或者雷电电流进入大地时,突然将电路或设备外壳的电位抬高。
因此可避免设备外壳或电路中电位抬高造成人触电事故,也可避免因为电位抬高造成设备或电路因反击电流损坏设备的绝缘,这样就能确保设备系统的正常运行。
十、什么是单相间歇性电弧接地故障?
间歇性电弧接地是指在中性点不接系统中,当发生一相对地短路故障,常出现电弧,由于系统中存在电容和电感,此时可能引起线路某一部分的振荡,当电流振荡零点或工频零点时,电弧可能暂时熄灭,之后事故相电压升高后,电弧则可能重燃,这种现象为间歇性电弧接地。
概念间歇性电弧接地--在中性点不接系统中,当发生一相对地短路故障时,常出现电弧。在中性点不接地系统中,因间歇性电弧接地产生的过电压较高,且持续时间长,可能危及设备绝缘,甚至引起相间短路。
推荐阅读