RC电路电阻尖峰电压原因?
一、RC电路电阻尖峰电压原因?
RC电路是指由电阻R和电容C组成的电路,他是脉冲产生和整形电路中常用的电路。1.RC
1.RC充电电路
电源通过电阻给电容充电,由于一开始电容两端的电压为0,所以电压的电压都在电阻上,这时电流大,充电速度快。随着电容两端电压的上升,电阻两端的电压下降,电流也随之减小,充电速度变小。
充电的速度与电阻和电容的大小有关。电阻R越大,充电越慢,电容C越大,充电越慢。衡量充电速度的常数t(tao)=RC。
2.RC放电电路
电容C通过电阻R放电,由于电容刚开始放电时电压为E,放电电流I=E/R,改电流很大,所以放电速度很快。随着电容不断的放电,电容的电压也随着下降。电流也很快减小。
电容的放电速度与RC有关,R的阻值越大,放电速度越慢。电容越大,放电速度越慢
3.RC积分电路
RC积分电路可以将矩形波转变成三角波(或锯齿波)
电路工作原理:
在0-t1时间,矩形波为低电平,无电压对电容进行充电,所以输出电压为0。
在t1-t2时间,矩形波为高电平,有电压对电容进行充电,输出电压慢慢上升,由于时间常数tao=RC远大于脉冲的宽度tw,所以t2时间,输出电压无法到达高电平Vm。
在t2-t4时间,矩形波为低电平,电容C开始放电。
积分电路应该满足时间常数tao=RC远大于脉冲的宽度tw,一般大于3tw就行。
4.RC微分电路
RC微分电路可以将矩形波转化为宽度很窄的尖峰脉冲信号。
电路工作原理:
在0-t1时间里,矩形波为低电平,输入电压为0,无电流流过电容和电阻,所以电阻两端电压为0.
在t1-t2时间里,矩形波为高电平,输入电压为Vm,这时电容还没被充电,所以电阻两端电压为Vm,t1以后,电容开始充电,电阻两端的电压也随之下降。由于时间常数很小,所以电容很快就充电完成,电容电压上升到Vm,电阻电压为0。
在t2-t3时间,矩形波为低电平,输入电压为0,电容相当于一个电源,电阻得到一个下正上负的电压,随着电容的放电,电阻两端的电压也下降。
二、rc,rl串联电路电压算法?
有两种算法,一种是利用电流的最大值或有效值乘以RC,RL串联电路的阻抗值即得串联电路的总电压,这里未考虑电压与电流相位的关系。
一种是利用复数工具考虑电压与电流之间相位关系进行计算,数值的计算同前,电压电流的相位差就是不同电路的阻抗角。例如:
RC电路,其复阻抗为z=R-j*Xc,阻抗值为Z=√R²+X²c,阻抗角为φ=arctan(-Xc/R),是一个负角度,说明电路电压落后电流一个角度。
RL电路,其复阻抗为z=R+j*XL,阻抗值为Z=√R²+X²L,阻抗角为φ=arctanXL/R,是一正角度,说明电路电压超前电流一个角度。
三、rc串联电路输出电压与输入电压?
答:rc串联电路输出电压与输入电压RC电路就是电阻R和电容C组成的一种分压电路。输入电压加于RC串联电路两端,输出电压取自于电阻R或电容C。由于电容的特殊性质,对不同的输出电压取法,呈现出不同的频率特性。
由此RC电路在电子电路中作为信号的一种传输电路,根据需要的不同,在电路中实现了耦合、相移、滤波等功能,并且在阶跃电压作用下,还能实现波形的转换、产生等功能。
四、RC电路,什么是RC电路,RC电路介绍?
在模拟及脉冲数字电路中,经常涉及RC电路,在这些电路中,根据电阻R和电容C的取值不同、输入和输出关系以及处理的波形之间的关系,产生了具有不同功能的RC电路,常见的电路应用包括微分电路 、积分电路、耦合电路、滤波电路及脉冲分压器。
最简单的RC电路有一个电容和一个电阻组成,可以是串联,也可以是并联。
五、rc串联电路电阻电压怎么算?
RC串联电路,电阻电压可通过下面的方法来计算。
先求电流I
I=U/√(Xc²+R²)
=U/√((1/2πfC)²+R²)
式中:U是串联支路端电压,π=3.14,f交流电频率,C是电容量。
电阻电压
Ur=I*R
=U/√((1/2πfC)²+R²)*R
也可以利用电压三角形的边角关系计算电阻电压
Ur=U*cosα
α是总电压与电流的相位差。
六、rc电路中的电压如何计算?
首先我不认为题中结果式子是对的,如果电阻无限大,按该式子计算,输出电压为0,这是显然不对的。
这个问题其实比较复杂,二极管使得电路在两个状态之间切换,先说结论,如果电容足够大,输出电压会接近电源电压峰值减去二极管正向电压。
下面是简单的一部分推导,严格来说输出电压的统一表达式是不存在的
涉及到微分方程求解,不过主要结果通过电压图像和对应的电路图上可以很好说明。
七、rc串联电路电压计算公式?
串联电路,电流相等,然而,电路电压等于各用电器之和
U源=U1+∪2
八、rc振荡电路电容电压变化原理?
rc振荡电路一般用于产生1Hz~1MHz(fo=1/2πRC)的低频信号。对于RC振荡电路来说,增大电阻R即可降低振荡频率,而增大电阻是无需增加成本的;而对于LC振荡电路来说,一般产生的正弦波频率较高,若要产生频率较低的正弦振荡,势必要求振荡回路要有较大的电感和电容变化,200kHz以下的正弦振荡电路,一般采用振荡频率较低的RC振荡电路。
九、rc电路中电容的电压公式推导?
电容的充放电时间计算公式,假设有电源Vu通过电阻R给电容C充电,V0为电容上的初始电压值,Vu为电容充满电后的电压值,Vt为任意时刻t时电容上的电压值,那么便可以得到如下的计算公式:
Vt = V0 + (Vu – V0) * [1 – exp( -t/RC)]
如果电容上的初始电压为0,则公式可以简化为:
Vt = Vu * [1 – exp( -t/RC)] (充电公式)
由上述公式可知,因为指数值只可能无限接近于0,但永远不会等于0,所以电容电量要完全充满,需要无穷大的时间。 当t = RC时,Vt = 0.63Vu;
当t = 2RC时,Vt = 0.86Vu;
当t = 3RC时,Vt = 0.95Vu;
当t = 4RC时,Vt = 0.98Vu;
当t = 5RC时,Vt = 0.99Vu;
可见,经过3~5个RC后,充电过程基本结束。
当电容充满电后,将电源Vu短路,电容C会通过R放电,则任意时刻t,电容上的电压为:
Vt = Vu * exp( -t/RC) (放电公式)
十、rc振荡电路输出电压如何计算?
1.rc振荡回路电容器的电压有:电压=U*exp(-t/rc),U表示电压初值,rc表示电阻电容,t为经过的时间,exp(-t/rc)表示e的-t/rc次方.时间常数τ =rc ,即电容电阻的乘积,引入时间常数后电压=U*exp(-t/τ)因此,零输入响应的电压变化是一个指数衰减的过程,理论上是无穷时间,但一般是到3~5个时间常数就认为衰减结束了.因此放电时间取决于时间常数τ =rc .2.对于lc振荡回路,情况比较复杂,你只记得于LC的乘积有关就可以了.要详细的话也麻烦.对一般的LRC回路按R>2*sqr(L/R) R=2*sqr(L/R) R<2*sqr(L/R) sqr(X)表示根号下(X)分为三种情况,大致地说,放电时间取决于电路中R,L,C的值,U不等于0而I=0时,电容通过L,R放电,解二阶偏微分方程可以得到两个特征值如:p1=-(R/2L)+spr[(R/2L)*(R/2L)-1/LC]p1=-(R/2L)-spr[(R/2L)*(R/2L)-1/LC]电容电压=[U/(p2-p1)]*[p2exp(p1*t)-p1exp(p2*t)
]你可以据此分析电容放电时间与LRC的关系.麻烦的多,因此你只记与LCR的值有关就行了.没有R时就令R=0,因此只于LC的乘积有关了.
推荐阅读