您现在的位置是:主页 > 电压 > 正文

输出电容纹波电压计算公式?

电压 2024-06-02

一、输出电容纹波电压计算公式?

电容最小值:C = 负载电流I /(纹波电压V * 频率)

其中C--是所需的最小电容容值

负载电流I--就是整流电路的负载电流

纹波电压V--是在整流器输出端测到的电压波动范围

频率--对于桥式全波整流电路,这是输入信号频率的两倍。

二、电压纹波率怎么计算?

电压纹波率=电压纹波数量÷电压波总数量

三、电解电容的纹波电压范围?

纹波电压是指峰值电压吗,如果是滤波的话,只能用在35V左右

电解电容是电容的一种,金属箔为正极(铝或钽),与正极紧贴金属的氧化膜(氧化铝或五氧化二钽)是电介质,阴极由导电材料、电解质(电解质可以是液体或固体)和其他材料共同组成,因电解质是阴极的主要部分,电解电容因此而得名。

四、纹波电压计算公式?

纹波电压的计算公式是与所采用的电压降包络波形有关的。纹波电压是指电路中的电容贮能元器件充放电时,会产生交流电压的现象。纹波电压的大小与所采用的电压降包络波形有关,因此计算公式也会根据不同的电压降包络波形而变化。常见的计算纹波电压的公式有简化版和综合版。简化版是基于假设电感元件的电流瞬间变化,电容元件的电压瞬间不变,并忽略电流和电压之间的相位差,适用于理论计算和简单工程中。综合版考虑了电流和电压之间相位差的影响,更加准确,适用于实际工程设计和计算。

五、buck电压纹波计算公式?

在开关断开的时候,输出端电压为Vo,二极管导通,那么电感右侧就是Vo,电感左侧接的是-Vd,所以此时电感两端电压是Vo+Vd。

整个电路稳定之后,因为负载电流恒定,那么一个周期时间之内,在开关导通时电感电流增加的量,要等于开关截止时,电感电流减小的量,即电感充了多少电就要放多少电,不然负载的电流或者电压就要发生变化。

即一个周期内,电感电流增大量等于减小量。

然后又因为U=Ldi/dt,di/dt=U/L,L不变,所以电感电流变化速度与电压成正比。

简单说就是,电感电流上升或下降的斜率与电压成正比。

六、电容纹波电流计算公式?

纹波电流或电压是指的电流中的高次谐波成分,会带来电流或电压幅值的变化,可能导致击穿,由于是交流成分,会在电容上发生耗散,如果电流的纹波成分过大,超过了电容的最大容许纹波电流,会导致电容烧毁。

Urms = Irms × R

式中,Urms 表示纹波电压

Irms 表示纹波电流

R 表示电容的 ESR

七、钽电容的纹波电流如何计算

钽电容的纹波电流可以通过计算器计算得出。首先需要了解纹波电流的定义,即在电容器中由交流电源引起的非恒定电流。

然后根据电容器的电压波动和交流电源的频率,利用公式I = C*dV/dt,其中I为纹波电流,C为电容值,dV/dt为电压随时间的变化率,可以计算得出纹波电流的数值。在实际应用中,需考虑电容器的额定工作电压和纹波电流的承受能力,以确保电容器稳定运行。

八、buck纹波电压?

对滤波效果而言,电容的ESL和ESR参数都很重要,电感会阻止电流的突变,电阻则限制了电流的变化率,这些影响对电容的充放电显然都不利。优质的电容在设计及制造时都采取了必要的手段来降低ESL和ESR,故而横向比较起来,同样的容量滤波效果却不同。

纹波电压主要由几个部分引起

1、电容的ESR引起的

2、电容的ESL引起的

3、电容的充放电引起的

4、噪声引起的

漏电流小,ESR小,一般都是认为要选择低ESR的系列,不过也与负载有关,负载越大,ESR不变时,纹波电流变大,纹波电压也变大。我们从公式上来看看,dV*C=di*dt;dv就是纹波,di是电感上电流的值,dt是持续的时间。一般的开关电源书籍都会讲到怎么算纹波,大题分解为:滤波电容对电压的积分+滤波电容的ESR+滤波电容的ESL+noise

一般对纹波的计算通常是估算 有关开关电源纹波的计算,原则上比较复杂,要将输入的矩形波进行傅立叶展开成各次谐波的级数,计算每个谐波的衰减,再求和。最后的结果不仅与滤波电感、滤波电容有关,而且与负载电阻有关。当然,计算时是将滤波电感和滤波电容看成理想元件,若考虑电感的直流电阻以及电容的ESR,那就更复杂了。所以,通常都是估算,再留出一定余量,以满足设计要求。对样机需要实际测试,若不能满足设计要求,则需要更改滤波元件参数。

以Buck电路为例,电感中电流连续和断续,开关电源的传递函数完全不同。电流连续时环路稳定,电流断续时未必稳定。而电感中电流是否连续,除与电感量等有关外,还与负载有关。更严重的是,电流是否连续还与占空比有关,而占空比是由反馈电路控制的。不仅Buck,其它如Boost以及由基本拓扑衍生出来的正激、反激等也是一样。

若要求所有可能产生的工作状态下都稳定,通常要加假负载以保证Buck电路电感电流总是连续(对Buck/Boost或反激则保证不会在连续断续之间转变),或者把反馈环路时间常数设计得非常大(这会在很大程度上降低开关电源的响应速度)。对输出电压可调整的开关电源(例如实验室用的0~30V输出电源),环路稳定的难度更大。对这类电源,往往要在开关电源之后再加一级线性调整

九、反射纹波电压?

所谓反射纹波电压,是指输出电压中50赫或100赫的交流分量,通常用有效值或峰值表示。经过稳压作用,可以使整流滤波后的纹波电压大大降低,降低的倍数反比于稳压系数S 。

十、电容怎么计算电压?

电容电压的关系,电容电压的计算公式

电容(Capacitance)亦称作“电容量”,是指在给定电位差下的电荷储藏量,记为C,国际单位是法拉(F)。

一般来说,电荷在电场中会受力而移动,当导体之间有了介质,则阻碍了电荷移动而使得电荷累积在导体上,造成电荷的累积储存,储存的电荷量则称为电容。

电容是指容纳电场的能力。

任何静电场都是由许多个电容组成,有静电场就有电容,电容是用静电场描述的。一般认为:孤立导体与无穷远处构成电容,导体接地等效于接到无穷远处,并与大地连接成整体。

电容(或称电容量)是表现电容器容纳电荷本领的物理量。

电容从物理学上讲,它是一种静态电荷存储介质,可能电荷会永久存在,这是它的特征,它的用途较广,它是电子、电力领域中不可缺少的电子元件。主要用于电源滤波、信号滤波、信号耦合、谐振、滤波、补偿、充放电、储能、隔直流等电路中。

电容器所带电量Q与电容器两极间的电压U的比值,叫电容器的电容。【电容电压的关系,电容电压的计算公式】

在电路学里,给定电势差,电容器储存电荷的能力,称为电容(capacitance),标记为C。

采用国际单位制,电容的单位是法拉第(farad),标记为F。电工天下

由于法拉这个单位太大,所以常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)等,如果用GSC单位制,电容的单位是静法。

根据电容的定义,电容器两极间的单位电压下储藏的电量叫做电容,电容应该是电量与电压的比值,也就是C=Q/U。

一个电容器,如果带1库仑的电量时两级间的电压是1伏特,这个电容器的电容就是1法拉第,即:C=Q/U 。

但电容的大小不是由Q(带电量)或U(电压)决定的,即电容的决定式为:C=εS/4πkd 。其中,ε是希腊字母,读作epsilon,是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。常见的平行板电容器,电容为C=εS/d(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离)。

电容的充放电计算公式

电容充放电时间的计算:

电容充放电时间的计算: 1.L、 元件称为“惯性元件”, C 即电感中的电流、 电容器两端的电压, 都有一定的“电惯性”, 不能突然变化。

充放电时间,不光与 L、C 的容量有关,还与充/放电电路中的电阻 R 有关。

“1UF 电容它的充放电时间是多长?”,不讲电阻,就不能回答。

RC 电路的时间常数:τ=RC 充电时,uc=U×[1-e^(-t/τ)] U 是电源电压 放电时,uc=Uo×e^(-t/τ) Uo 是放电前电容上电压 RL 电路的时间常数:τ=L/R LC 电路接直流,i=Io[1-e^(-t/τ)] Io 是最终稳定电流 LC 电路的短路,i=Io×e^(-t/τ)] Io 是短路前 L 中电流 2. 设 V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值;

Vt 为 t 时刻电容上的电压值。

则:

Vt=V0 +(V1-V0)× [1-exp(-t/RC)] 或 t = RC × Ln[(V1 - V0)/(V1 - Vt)] 例如,电压为 E 的电池通过 R 向初值为 0 的电容 C 充电,V0=0,V1=E,故充到 t 时刻电容 上的电压为: Vt=E × [1-exp(-t/RC)]

再如,初始电压为 E 的电容 C 通过 R 放电 , V0=E,V1=0,故放到 t 时刻电容上的电压为: Vt=E × exp(-t/RC)

又如,初值为 1/3Vcc 的电容 C 通过 R 充电,充电终值为 Vcc,问充到 2/3Vcc 需要的时间 是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t=RC × Ln[(1-1/3)/(1-2/3)]=RC × Ln2 =0.693RC

注:以上 exp()表示以 e 为底的指数函数;Ln()是 e 为底的对数函数

3. 提供一个恒流充放电的常用公式:?Vc=I*?t/C. 【电容电压的关系,电容电压的计算公式】

再提供一个电容充电的常用公式: Vc=E(1-e-(t/R*C))。RC 电路充电公式 Vc=E(1-e-(t/R*C))中的:-(t/R*C)是 e 的负指数项 。 关于用于延时的电容用怎么样的电容比较好,不能一概而论,具体情况具体分析。实际电容 附加有并联绝缘电阻,串联引线电感和引线电阻。还有更复杂的模式--引起吸附效应等等。

E 是一个电压源的幅度, 通过一个开关的闭合, 形成一个阶跃信号并通过电阻 R 对电容 C 进行充电。E 也可以是一个幅度从 0V 低电平变化到高电平幅度的连续脉冲信号的高电平幅度。 电容两端电压 Vc 随时间的变化规律为充电公式 Vc=E(1-e-(t/R*C))。

其中的: -(t/R*C) 是 e 的负指数项,这里没能表现出来,需要特别注意。式中的 t 是时间变量,小 e 是自然指 数项。举例来说:当 t=0 时,e 的 0 次方为 1,算出 Vc 等于 0V。符合电容两端电压不能突 变的规律。

对于恒流充放电的常用公式:?Vc=I*?t/C,其出自公式:Vc=Q/C=I*t/C。 电工天下

举例:设 C=1000uF,I 为 1A 电流幅度的恒流源(即:其输出幅度不随输出电压变化)给电容 充电或放电,根据公式可看出,电容电压随时间线性增加或减少,很多三角波或锯齿波就是 这样产生的。根据所设数值与公式可以算出,电容电压的变化速率为 1V/mS。

这表示可以 用 5mS 的时间获得 5V 的电容电压变化;换句话说,已知 Vc 变化了 2V,可推算出,经历 了 2mS 的时间历程。

当然在这个关系式中的 C 和 I 也都可以是变量或参考量。详细情况可 参考相关的教材看看。供参考。

4. 可得: 首先设电容器极板在 t 时刻的电荷量为 q,极板间的电压为 u.,根据回路电压方程:U-u=IR(I 表示电流),又因为 u=q/C,I=dq/dt(这儿的 d 表示微分哦),代入后得到: U-q/C=R*dq/dt, 也就是 Rdq/(U-q/C)=dt,然后两边求不定积分, 并利用初始条件: t=0,q=0 就得到 q=CU 【1-e^ -t/(RC)】这就是电容器极板上的电荷随时间 t 的变化关系函数。

顺便指出,电工学上常把 RC 称为时间常数。

相应地,利用 u=q/C,立即得到极板电压随时间变化的函数, u=U【1-e^ -t/(RC)】。

从得到的公式看,只有当时间 t 趋向无穷大时,极板上的电荷和电压 才达到稳定,充电才算结束。

但在实际问题中,由于 1-e ^-t/(RC)很快趋向 1,故经过很短的一段时间后,电容器极板间电荷和电压的变化已经微乎其微,即使用灵敏度很高的电学仪器也察觉不出来 q 和 u 在微小地变化,所以这时可以认为已达到平衡,充电结束。