正反转电路中接触器选什么电压?
一、正反转电路中接触器选什么电压?
这个没有具体规定,完全根据需要确定。如果没有特殊要求,就按照所使用的交流接触器线圈的吸引电压设定。一般有380V、220V、36V、24V…多种规格。
如果就是单纯的正、反、停模式,标准配置就是两只交流接触器,一只热继电器。此时使用线圈电压为380V的交流接触器,比较适宜。因为:控制电路要使用三根相线中的两根,可以起到一定的缺相保护作用。(保护涵盖面2/3)不推荐使用220V的交流接触器。因为如果出现零线断裂、或接触不良时(一些经验不足的电工,很少经常关注零线的状况),控制电路可能会失灵,或时好时坏,会让维修人员相当挠头!有些设备在电机控制电路之外,还有“弱电”线路和其它控制原件,需要用变压器降压。这时,电机的控制线路可能就要和弱电线路使用同一电源。比如:24或36V低压交流电。这样做主要是起联锁作用:如果,弱电部份的电源出了故障,则电机控制电路也不能工作,可以避免故障扩大。再有,低压接触器的线圈,线径也比较粗,相对可靠性更高。
二、正反转电路分析?
交流电动机正反转电路有两大组成部分:主电路,控制电路。
主电路中用两个交流接触器给电动机供电,并交换两相电源实现换向。比如kM1接触器线圈通电,kM2接触器线圈断电,供电关系:L1-u,L2-v,L3-w。kM2线圈通电,供电关系:L1-w,L2-v,L3-u,交换两相电源,则电机反向运转。
三、反转电路工作原理?
正反转原理:
1.
当电机正转时,按下正转按钮SB3,其常闭触点先断开,切断反转控制回路,然后其常开触点闭合。接通正转控制回路,正转接触器KM1得电吸合并自锁,电源接触器KM也得电吸合,电动机正序接入三相电源,正向起动运转。
2.
当正转变反转时,按下反转按钮SB2,其常闭触点先断开,切断正转控制回路,使正转接触器KMl断电释放,电源接触器KM也随着断电释放...
3.
可见在正转换接时,由于KM1和KM两个接触器主触点形成4断点灭弧电路,可有效地熄灭
四、互锁电路也是正反转电路吗?
在电机正反转电路中,有机械互锁和电气互锁。
五、正反转电路实物接线?
主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。
当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。
当接触器KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。
电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。
为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源。
六、正反转控制电路?
1、合上空气开关Q,控制电路有电。假设原来晶闸管VT截止,KA失电,接触器KM线圈通电,主电路接成正转。控制电路中左边的单晶管BT33旁边的100uF电容通过RP1和24kΩ电阻充电延时。
. 2、当左边BT33旁100uF电容电压达到一定值后左边的单晶管BT33导通,电容通过47Ω电阻放电,使VT的控制极获得高电位,VT导通,KA线圈通电,接触器KM线圈失电,主电路接成反转。同时,KA常开辅助触头将上述100uF电容旁路,使左边的BT33管不再导通。
. 3、VT导通后,右边的BT33管旁边的100uF电容开始有了充电回路,且开始充电,充电延时时间到,右边BT33管也导通,100uF电容向10uF电容和100Ω电阻放电,使得VT阴极电位为正阳极电位为负,即VT反偏,并截止。VT截止后,KA失电,接触器KM线圈通电,主电路接成正转。
. 4、左边BT33管旁100uF电容再次开始充电延时。又重新开始“1、”步及以后的工作。就这样通过左右两个BT33管对VT的控制,使KA反复导通与截止,电动机就一会儿接成正转,一会儿接成反转。调节两个电位器RP可调节BT33管旁边100uF电容的充电延时时间,从而控制电动机正反转的切换时间。—— 这就是电动机正反转定时控制电路的工作原理。
七、电机正反转控制电路无负载时电压正常,接上电机后无电压?
应该是控制输出的继电器坏了,反接时短路了,换个新的试试。
八、电压数码管显示电路
电压数码管显示电路是一种常见的电子电路,用于显示数字和字符等信息。它通常由数码管、驱动芯片和控制电路组成。数码管通过电流的通断来显示不同的数字或字符,而驱动芯片和控制电路则负责控制数码管的显示。
数码管
数码管是一种能够显示数字和部分字符的显示器件。它可以分为共阴极数码管和共阳极数码管两种类型。共阴极数码管在通电时,各个数码管段的阳极需要接通,而共阳极数码管则相反,需要将各个数码管段的阴极接通。数码管通常由七段显示器件构成,即7个可独立控制的段,分别是A、B、C、D、E、F、G段。
驱动芯片
驱动芯片是控制数码管显示的核心组成部分。它能够根据输入的信号控制数码管的亮灭,并实现数字和字符的显示。常见的驱动芯片有7447、74LS47、74HC595等。这些驱动芯片主要负责将控制信号转换为适合数码管输入的信号,以控制数码管的显示。
控制电路
控制电路是连接驱动芯片和数码管的桥梁,它负责将外部信号转换为驱动芯片所需的输入信号。控制电路一般包括和显示相关的电阻、电容、开关等元件。通过对这些元件的搭配和控制,可以实现不同的显示效果。
电压数码管显示电路的工作原理
电压数码管显示电路通过对数码管的阴极或阳极施加不同的电压来控制其亮灭。当需要显示数字0时,通过驱动芯片向数码管施加相应的电压,使得数码管的相应段亮起。同理,当需要显示数字1、2、3等时,也通过驱动芯片施加相应的电压,控制对应的段亮起。通过快速切换不同的数码管段以及不同的电压,可以实现多个数字或字符的显示。
电压数码管显示电路的应用
电压数码管显示电路有广泛的应用场景。它常见于电子钟、计时器、计数器、温度显示器等设备中。通过电压数码管的显示,我们可以清晰地了解到相应的数字或字符信息,提高了信息传递的准确性和效率。
结语
电压数码管显示电路是一种常见而重要的电子电路。我们通过对数码管、驱动芯片和控制电路的合理搭配和控制,可以实现数字和字符的精确显示。电压数码管显示电路在各种仪器设备中得到广泛应用,为我们提供了便捷而准确的信息显示。
九、为什么串联电路中电压
为什么串联电路中电压
在学习电路理论中,我们经常会遇到串联电路和并联电路。在这两种电路中,电压是一个非常重要的概念。对于初学者来说,可能会想知道为什么在串联电路中电压的分布是如此特殊。
要理解为什么串联电路中电压的分布与我们直觉不同,我们首先需要了解电路中的基本原理。在一个电路中,电流会沿着闭合回路流动,随着电流流动,电压也会在电路元件之间产生压差。
在一个简单的串联电路中,电流从电源正极进入第一个电阻,然后从第一个电阻流向第二个电阻,以此类推,最终回到电源的负极。在这个过程中,电压会在电阻之间按照一定的规律分布。
当电流通过一个电阻时,电阻会产生电压降,即电压的值会减少。而在串联电路中,电流都是相等的(根据基尔霍夫电流定律),这意味着电流通过每个电阻时,电压的降落也会保持一致。
这就是为什么在串联电路中,电压会分布在各个电阻上而不是均匀分配的原因。简单来说,串联电路中的电压分布与电阻的阻值成正比,电阻值越大,它所承受的电压降落就越大。
举个例子来说,假设我们有一个串联电路,其中有两个电阻,一个阻值为10欧姆,另一个阻值为20欧姆。如果我们在电路的两端施加20伏的电压,根据欧姆定律,电流将等于电压除以总阻值(电流 = 电压 / 总阻值)。
在这种情况下,总阻值为30欧姆,因此电流将等于20伏 / 30欧姆,即0.67安培。由于电流在串联电路中保持恒定,所以无论是通过10欧姆的电阻还是通过20欧姆的电阻,电流都将保持0.67安培。
然而,由于电阻的不同,电压的分布会有所不同。根据欧姆定律,电压等于电流乘以电阻(电压 = 电流 × 电阻)。因此,在10欧姆的电阻上,电压将等于0.67安培 × 10欧姆,即6.7伏特;而在20欧姆的电阻上,电压将等于0.67安培 × 20欧姆,即13.4伏特。
这个例子展示了为什么在串联电路中电压的分布与我们的直觉不同。虽然我们在电路的两端施加的是相同的电压,但由于电阻的不同,电压会在电路中按照一定的比例分布。
串联电路中电压分布的原理对于电路设计和电压测量至关重要。对于电路设计师来说,了解电压分布可以帮助他们选择合适的电阻值,以确保每个电阻都能承受适当的电压降落。而对于电压测量来说,了解串联电路中电压的分布可以帮助我们准确地测量特定电阻上的电压。
总之,串联电路中电压的分布与电阻的阻值成正比,电阻值越大,它所承受的电压降落就越大。了解电压分布的原理对于电路设计和电压测量都是非常重要的。希望通过本文的解释,您对为什么串联电路中电压的分布如此特殊有了更好的理解。
十、电压放大电路?
放大是最基本的模拟信号处理功能,它能将微弱的电信号增强到人们所需要的数值。放大电路一般由信号源,三极管/场效应管和负载组成。
放大电路共有四种模型:电压放大,电流放大,互阻放大和互导放大。该四种模型由放大电路的输出量和输入量进行分类。以下A为放大增益。
电压放大电路->Vout=A*Vin。因输入量为电压,输出量也为电压,故称电压放大。
电流放大电路->Iout=A*Iin。因输入量为电流,输出量也为电流,故称电流放大。
互阻放大电路->Vout=A*Iin。因输入量为电流,输出量为电压,U/I=R,故称互阻。
互导放大电路->Iout=A*Vin。因输入量为电压,输出量为电流,I/U=G,故称互导。
推荐阅读