您现在的位置是:主页 > 电压 > 正文

红外发光二极管电压是多少

电压 2024-08-21 17:14

一、红外发光二极管电压是多少

红外发光二极管电压是多少?

红外发光二极管是一种常见的红外线发射装置,其电压是使用中非常重要的一环。一般来说,红外发光二极管需要的工作电压范围在1.4V至2.5V之间。具体电压值会因型号、功率和应用环境的不同而有所差异。

红外发光二极管的工作原理是通过激发红外线辐射来传递信息。为了确保其正常工作,需要保证其工作电压在合适的范围内。如果电压过高,可能会损坏红外发光二极管,导致其发射的红外线失真或效率降低;而如果电压过低,则可能无法保证红外发光二极管正常工作,甚至无法触发其发射红外线。

在应用红外发光二极管时,需要了解其工作电压特性,并根据实际应用场景选择合适的电压范围。同时,也要注意电路的设计和调试,以确保红外发光二极管能够正常工作。如果使用不当,可能会导致其性能下降或损坏。

注意事项

1. 确保红外发光二极管的电压在合适的范围内,避免过高或过低的电压导致其损坏。

2. 在设计电路时,要考虑到红外发光二极管的性能和工作环境,合理布线和调试电路。

3. 在使用红外发光二极管时,要注意安全,避免因触电或其他意外情况导致其损坏。

二、红外发光二极管的工作电压及应用分析

红外发光二极管是一种将电能转换为红外光能的半导体器件,广泛应用于各种红外线遥控设备、光电开关、光纤通信等领域。那么,红外发光二极管的工作电压到底是多少呢?下面我们来详细了解一下。

红外发光二极管的工作电压

红外发光二极管的工作电压通常在1.2V到1.7V之间,具体取决于二极管的材料和结构。常见的红外发光二极管材料包括砷化镓(GaAs)、磷化铟(InP)等,不同材料的工作电压也有所不同。

以砷化镓(GaAs)红外发光二极管为例,其正向工作电压一般在1.3V到1.5V之间。当给予正向偏压时,二极管会发出波长在850nm左右的红外光。这种红外光不可见,但可以被红外接收器探测到。

另外,红外发光二极管的工作电压还会受到温度的影响。随着温度升高,二极管的正向电压会略有下降。因此在实际应用中,需要根据具体工作环境来选择合适的驱动电压。

红外发光二极管的应用

红外发光二极管凭借其体积小、功耗低、响应快等特点,广泛应用于以下领域:

  • 红外遥控:红外发光二极管作为遥控器发射端,可以将控制指令以红外光的形式传输到接收端,实现对电视、空调等设备的远程控制。
  • 光电开关:红外发光二极管与光电探测器组成光电开关,可用于检测物体的存在或位置,广泛应用于自动门、安全防范等场合。
  • 光纤通信:红外发光二极管可将电信号转换为光信号,通过光纤传输,是光纤通信系统的核心器件之一。
  • 医疗设备:红外发光二极管可用于脉搏血氧检测、体温监测等医疗诊断设备。

总之,红外发光二极管作为一种重要的光电转换器件,在日常生活和各种高新技术领域都扮演着不可或缺的角色。希望通过本文的介绍,您对红外发光二极管的工作原理和应用有了更深入的了解。感谢您的阅读!

三、红外发射二极管的导通电压为多少?

常用的红外发光二极管(如SE303、PH303),其外形和发光二极管LED相似,发出红外光。

管压降约1.4v,工作电流一般小于20mA。为了适应不同的工作电压,回路中常常串有限流电阻。发射红外线去控制相应的受控装置时,其控制的距离与发射功率成正比。为了增加红外线的控制距离,红外发光二极管工作于脉冲状态,因为脉动光(调制光)的有效传送距离与脉冲的峰值电流成正比,只需尽量提高峰值Ip,就能增加红外光的发射距离。提高Ip的方法 减小脉冲占空比,即压缩脉冲的宽度T。一些彩电红外遥控器,其红外发光管的工作脉冲占空比约为1/3-1/4;一些电器产品红外遥控器,其占空比是1/10。减小脉冲占空比还可使小功率红外发光二极管的发射距离大大增加。常见的红外发光二极管分类 按其功率大小分为:小功率1mW-10mW、中功率20mW-50mW和大功率50mW-100mW以上三大类。要使红外发光二极管产生调制光,只需在驱动管上加上一定频率的脉冲电压。

四、发光二极管几伏电压才能发光?

这里不同颜色的发光二极管,工作电压都不一样,这里给你总结了比较常见的发光二极管。

发光二极管的工作原理是什么?为什么可以发出不同颜色的光

这里在给你详细介绍一下发光二极管,相信你会对发光二极管有个更为深刻的立交。

一、什么是发光二极管?

发光二极管(LED)本质上是一种特殊类型的二极管,因为发光二极管具有与PN结二极管非常相似的电气特性。当电流流过发光二极管(LED)时,发光二极管(LED)允许电流正向流动,并且阻止电流反向流动。

发光二极管由非常薄的一层但相当重掺杂的半导体材料制成。根据所使用的半导体1材料和掺杂量,当正向偏置时,发光二极管(LED)将发出特定光谱波长的彩色光。如下图所示,发光二极管(LED)用透明罩封装,以可以发出光来。

发光二极管实物图

二、发光二极管电路符号

发光二极管符号与二极管符号相似,只是有两个小箭头表示光的发射,因此称为发光二极管(LED)。发光二极管包括两个端子,即阳极(+)和阴极(-),发光二极管的符号如下所示。

发光二极管符号

三、发光二极管正负极怎么区分?

这个在我之前的文章里面有详细的讲解,可以直接点击下面这个文章。

二极管怎么区分正负极

这里简单地讲一下。

  • 发光二极管比较常用,正负极容易区分。长引脚为正极,短引脚为负极。
  • 引脚相同的情况下,LED管体内极小的金属为正极,大块的为负极。
  • 贴片式发光二极管,一般都有一个小凸点区分正负极,有特殊标记为负极,无特殊标记为正极。
发光二极管正负极性判断图
发光二极管正负极性判断图

三、发光二极管怎么测好坏?

更为具体的,大家可以去看我的这篇文章,直接点击进入就可以了。

二极管怎么测好坏?

四、发光二极管的工作原理

发光二极管在正向偏置时发光,当在结上施加电压以使其正向偏置时,电流就像在任何 PN 结的情况下一样流动。来自 p 型区域的空穴和来自 n 型区域的电子进入结并像普通二极管一样重新组合以使电流流动。当这种情况发生时,能量被释放,其中一些以光子的形式出现。

发现大部分光是从靠近 P 型区域的结区域产生的。因此,二极管的设计使得该区域尽可能靠近器件的表面,以确保结构中吸收的光量最少。具体的原理可以看下图。

发光二极管工作原理图

上图显示了发光二极管的工作原理以及该图的分布过程。

  • 从上图中,我们可以观察到 N 型硅是红色的,包括由黑色圆圈表示的电子。
  • P 型硅是蓝色的,它包含空穴,它们由白色圆圈表示。
  • pn结上的电源使二极管正向偏置并将电子从n型推向p型。向相反方向推动空穴。
  • 结处的电子和空穴结合在一起。
  • 随着电子和空穴的重新结合,光子被释放出来。
发光二级管原理图

五、发光二极管怎么发出不同颜色的光?

发光二极管由特殊半导体化合物制成,例如砷化镓 (GaAs)、磷化镓 (GaP)、砷化镓磷化物 (GaAsP)、碳化硅 (SiC) 或氮化镓铟 (GaInN) 都以不同的比例混合在一起,以产生不同波长的颜色。

不同的 LED 化合物在可见光谱的特定区域发光,因此产生不同的强度水平。所用半导体材料的准确选择将决定光子发射的总波长,从而决定发射光的颜色。

发光二极管的实际颜色取决于所发射光的波长,而该波长又取决于制造过程中用于形成 PN 结的实际半导体化合物。

因此,LED 发出的光的颜色不是由 LED 塑料体的颜色决定的,尽管这些塑料体略微着色以增强光输出并在其未被电源照亮时指示其颜色。

六、发光二极管材料

为了产生可以看见的光,必须优化PN结并且必须选择正确的材料。常用的半导体材料包括硅和锗,都是一些简单的元素,但这些材料制成的PN结不会发光。相反,包括砷化镓、磷化镓和磷化铟在内的化合物半导体是化合物半导体,由这些材料制成的结确实会发光。

纯砷化镓在光谱的红外部分释放能量,为了将光发射带入光谱的可见红色端,将铝添加到半导体中以产生砷化铝镓 (AlGaAs),也可以添加磷以发出红光。对于其他颜色,则使用其他材料。例如,磷化镓发出绿光,而铝铟镓磷化物则用于发出黄光和橙光,大多数发光二极管基于镓半导体。

不同发光二极管的材料

  • 砷化镓 (GaAs) – 红外线
  • 砷化镓磷化物 (GaAsP) – 红色至红外线,橙色
  • 砷化铝镓磷化物 (AlGaAsP) – 高亮度红色、橙红色、橙色和黄色
  • 磷化镓 (GaP) – 红色、黄色和绿色
  • 磷化铝镓 (AlGaP) – 绿色
  • 氮化镓 (GaN) – 绿色、翠绿色
  • 氮化镓铟 (GaInN) – 近紫外线、蓝绿色和蓝色
  • 碳化硅 (SiC) – 蓝色作为基材
  • 硒化锌 (ZnSe) – 蓝色
  • 氮化铝镓 (AlGaN) – 紫外线

更加具体的大家可以看下面这个图,下图涵盖了发光二极管的材料,发光二极管颜色,发光二极管工作电压、发光二极管波长。

发光二极管颜色材料对应图

七、发光二极管VI特性

目前有不同类型的发光二极管可供选择,并且拥有不同的LED 特性,包括颜色光或波长辐射、光强度。LED的重要特性是颜色。在开始使用 LED 时,只有红色。随着半导体工艺的帮助,LED的使用量增加,对LED新金属的研究,形成了不同的颜色。

发光二极管VI特性图

八、发光二极管的应用

LED 有很多应用,下面将解释其中的一些。

  • LED在家庭和工业中用作灯泡
  • 发光二极管用于摩托车和汽车
  • 这些在手机中用于显示消息
  • 在红绿灯信号灯处使用 LED

1、发光二极管串联电阻电路

串联电阻值R S可以通过简单地使用欧姆定律计算得出,通过知道 LED 所需的正向电流I F、组合两端的电源电压V S和 LED 的预期正向电压降V F在所需的电流水平,限流电阻计算如下:

LED串联电阻电路

2、发光二极管示例

正向压降为 2 伏的琥珀色 LED 将连接到 5.0v 稳定直流电源。使用上述电路计算将正向电流限制在 10mA 以下所需的串联电阻值。如果使用 100Ω 串联电阻而不是先计算,还要计算流过二极管的电流。

1)串联电阻需要在 10mA 。

发光二极管串联电阻公式

2)用100Ω串联电阻。

发光二极管串联电流公式

上面的第一个计算表明,要将流过 LED 的电流精确地限制在 10mA,我们需要一个300Ω的电阻器。在E12系列电阻中没有300Ω电阻,因此我们需要选择下一个最高值,即330Ω。快速重新计算显示新的正向电流值现在为 9.1mA。

3、发光二极管串联电路

我们可以将 LED 串联在一起,以增加所需的数量或在显示器中使用时增加亮度。与串联电阻一样,串联的 LED 都具有相同的正向电流,IF仅作为一个流过它们。由于所有串联的 LED 都通过相同的电流,因此通常最好是它们都具有相同的颜色或类型。

发光二极管串联电路图

虽然 LED 串联链中流过相同的电流,但在计算所需的限流电阻R S电阻时,需要考虑它们之间的串联压降。如果我们假设每个 LED 在点亮时都有一个 1.2 伏的电压降,那么这三个 LED 上的电压降将为 3 x 1.2v = 3.6 伏。

如果我们还假设三个 LED 由同一个 5 V逻辑器件点亮或提供大约 10 毫安的正向电流,同上。然后电阻两端的电压降RS及其电阻值将计算为:

发光二极管串联公式

同样,在E12(10% 容差)系列电阻器中没有140Ω电阻器,因此我们需要选择下一个最高值,即150Ω。

4、用于偏置的发光二极管电路

大多数 LED 的额定电压为 1 伏至 3 伏,而正向电流额定值为 200 毫安至 100 毫安。

用于偏置的发光二极管电路图

LED 偏压如果向 LED 施加电压(1V 至 3V),则由于施加的电压在工作范围内的电流流动,因此它可以正常工作。类似地,如果施加到 LED 的电压高于工作电压,则发光二极管内的耗尽区将由于高电流而击穿。这种意想不到的高电流会损坏设备。

这可以通过将电阻与电压源和 LED 串联来避免。LED 的安全额定电压范围为 1V 至 3 V,而安全额定电流范围为 200 mA 至 100 mA。

这里,设置在电压源和 LED 之间的电阻器称为限流电阻器,因为该电阻器限制电流的流动,否则 LED 可能会损坏它。所以这个电阻在保护LED方面起着关键作用。

流过 LED 的电流可以写成:

IF = Vs – VD/Rs

'IF' 是正向电流

“Vs”是电压源

“VD”是发光二极管两端的电压降

“Rs”是限流电阻

电压量下降以破坏耗尽区的势垒。LED 电压降范围为 2V 至 3V,而 Si 或 Ge 二极管为 0.3,否则为 0.7 V。

因此,与Si或Ge二极管相比,LED可以通过使用高电压来操作。

发光二极管比硅或锗二极管消耗更多的能量来工作。

5、发光二级管驱动电路

TTL 和 CMOS 逻辑门的输出级都可以提供和吸收有用的电流量,因此可用于驱动 LED。普通集成电路 (IC) 在灌入模式配置中具有高达 50mA 的输出驱动电流,但在源极模式配置中具有约 30mA 的内部限制输出电流。

通过上面应该已经很明白了,无论哪种方式,都必须使用串联电阻将 LED 电流限制在安全值。以下是使用反相 IC 驱动发光二极管的一些示例,但对于任何类型的集成电路输出,无论是组合的还是顺序的,其想法都是相同的。

6、IC发光二极管驱动电路

IC驱动LED电路图

如果多个LED需要同时驱动,例如在大型 LED 阵列中,或者集成电路的负载电流过高,或者只使用分立元件而不是IC。那么另一种驱动方式下面给出了使用双极 NPN 或 PNP 晶体管作为开关的 LED。和以前一样,需要一个串联电阻R S来限制 LED 电流。

7、晶体管驱动电路

晶体管LED驱动电路

发光二极管的亮度不能通过简单地改变流过它的电流来控制。允许更多电流流过 LED 会使其发光更亮,但也会导致其散发更多热量。LED 旨在产生一定数量的光,工作在大约 10 至 20mA 的特定正向电流下。

在节电很重要的情况下,可以使用更少的电流。但是,将电流降低到 5mA 以下可能会使其光输出变暗,甚至将 LED 完全“关闭”。控制 LED 亮度的更好方法是使用称为“脉冲宽度调制”或 PWM 的控制过程,其中 LED 根据所需的光强度以不同的频率重复“打开”和“关闭”。

7、使用PWM的发光二极管光强度

PWM的LED光强度图

当需要更高的光输出时,具有相当短占空比(“ON-OFF”比)的脉冲宽度调制电流允许二极管电流,因此在实际脉冲期间输出光强度显着增加,同时仍保持 LED “平均电流水平”和安全范围内的功耗。

这种“开-关”闪烁条件不会影响人眼所见,因为它“填充”了“开”和“关”光脉冲之间的间隙,只要脉冲频率足够高,使其看起来像连续的光输出。因此,频率为 100Hz 或更高的脉冲实际上在眼睛看来比具有相同平均强度的连续光更亮。

8、LED显示屏

除了单色或多色 LED 外,多个发光二极管还可以组合在一个封装内,以生产条形图、条形、阵列和七段显示器等显示器。

7 段 LED 显示屏在正确解码时提供了一种非常方便的方式,以数字、字母甚至字母数字字符的形式显示信息或数字数据,顾名思义,它们由七个单独的 LED(段)组成,在一个单独的展示包中。

为了分别产生所需的从0到9和A到F的数字或字符,需要在显示屏上点亮 LED 段的正确组合。标准的七段 LED 显示屏通常有八个输入连接,每个 LED 段一个,一个用作所有内部段的公共端子或连接。

  • 共阴极显示器 (CCD) – 在共阴极显示器中,LED 的所有阴极连接都连接在一起,并且通过应用高逻辑“1”信号照亮各个段。
  • 共阳极显示器 (CAD) – 在共阳极显示器中,LED 的所有阳极连接都连接在一起,并且通过将端子连接到低逻辑“0”信号来照亮各个段。

9、典型的七段 LED 显示屏

典型七段LED显示屏

10、发光二极管光耦合器

最后,发光二极管的另一个有用应用是光耦合。也称为光耦合器或光隔离器,是由发光二极管与光电二极管、光电晶体管或光电三端双向可控硅开关组成的单个电子设备,可在输入之间提供光信号路径连接和输出连接,同时保持两个电路之间的电气隔离。

光隔离器由一个不透光的塑料体组成,在输入(光电二极管)和输出(光电晶体管)电路之间具有高达 5000 伏的典型击穿电压。当需要来自低电压电路(例如电池供电电路、计算机或微控制器)的信号来操作或控制另一个在潜在危险电源电压下操作的外部电路时,这种电气隔离特别有用。

光电二极管和光电晶体管光耦合器

光隔离器中使用的两个组件,一个光发射器,如发射红外线的砷化镓 LED 和一个光接收器,如光电晶体管,光耦合紧密,并使用光在其输入之间发送信号和/或信息和输出。这允许信息在没有电气连接或公共接地电位的电路之间传输。

光隔离器是数字或开关器件,因此它们传输“开-关”控制信号或数字数据。模拟信号可以通过频率或脉宽调制来传输。

九、LED的优缺点

发光二极管的优点包括以下几点。

  • LED的成本更低,而且很小。
  • 通过使用 LED 的电力进行控制。
  • LED 的强度在微控制器的帮助下有所不同。
  • 长寿命
  • 高效节能
  • 无预热期
  • 崎岖
  • 不受低温影响
  • 定向
  • 显色性非常好
  • 环保
  • 可控

发光二极管的缺点包括以下几点。

  • 价钱
  • 温度敏感性
  • 温度依赖性
  • 光质
  • 电极性
  • 电压灵敏度
  • 效率下降
  • 对昆虫的影响

以上就是关于发光二极管的一些基础知识及工作原理,大家有什么疑问,欢迎在评论区留言。

相关内容有参考网络

图片来源于网络

五、红外二极管

红外二极管的工作原理及应用

红外二极管是一种广泛用于红外探测和遥控系统的半导体器件。它具有体积小、功耗低、响应速度快、稳定性高等优点,因此在许多领域得到了广泛应用。本文将介绍红外二极管的工作原理、应用领域以及如何选择合适的红外二极管。

一、红外二极管的工作原理

红外二极管是一种基于PN结的发光器件。当加有反向电压时,半导体材料中会出现一个能级跃迁的区域,这个区域被称为"肖克利结"。当有足够的反向光子注入时,肖克利结中的电子和空穴将被激发到高能级上。当电子和空穴在正向电压下返回时,它们将释放出多余的能量,并以光子的形式释放出来。这些光子具有特定的波长,即红外光。因此,红外二极管能够将电能转化为光能,从而实现红外光的发射。

二、红外二极管的应用领域

1. 红外遥控系统:红外二极管是红外遥控系统的核心器件之一。它能够实现远距离、低功耗的红外信号发射,因此在各种家电产品中得到了广泛应用。例如,电视、空调、音响等设备都采用了红外遥控系统。 2. 防盗报警系统:红外二极管可以用于制作红外探测器,用于家庭、办公室、仓库等场所的防盗报警系统。它具有无电磁辐射、灵敏度高、稳定性好等特点。 3. 光学测量仪器:红外二极管可以用于制作红外热像仪,用于测量物体的温度分布。它能够实现非接触式测量,并且具有较高的灵敏度和分辨率。

三、如何选择合适的红外二极管

在选择合适的外二极管时,需要考虑以下几个因素:工作波长、发光强度、响应速度、工作电压等。此外,还需要根据应用场景选择合适的外围器件和电路,以确保系统的稳定性和可靠性。以下是一些选择红外二极管的建议: 1. 根据应用需求选择合适的工作波长。不同波长的红外光适用于不同的应用场景,如近程探测选择短波长,远程遥控选择长波长。 2. 了解所需的红外二极管发光强度和响应速度,选择适合的产品。发光强度越高,距离越远;响应速度越快,反应越灵敏。 3. 根据系统电压需求选择合适的工作电压。一些红外二极管需要使用电池供电,因此需要考虑电池的电压是否符合要求。 4. 考虑系统的抗干扰能力。在选择红外二极管时,需要考虑其抗电磁干扰的能力,以确保系统的稳定性和可靠性。 综上所述,红外二极管是一种具有广泛应用价值的半导体器件。了解其工作原理和应用领域,并选择合适的红外二极管,对于实现各种红外探测和遥控系统至关重要。`

六、遥控器红外二极管两端电压是多少?

红外二极管导通压降在0.7v左右,具体还是要看型号,可以拿万用表量一下导通压降

七、红外激光二极管

红外激光二极管:探索光的力量

在我们的日常生活中,光的重要性是不言而喻的。其中,红外激光二极管作为一种特殊的发光元件,已经引起了广泛的关注。在这篇文章中,我们将深入探讨红外激光二极管的工作原理、应用领域以及未来发展趋势。

首先,让我们来了解一下红外激光二极管的基本原理。红外激光二极管通过将电能转化为光能,产生红外激光脉冲。这种激光脉冲具有非常高的能量和精度,可以用于各种精密的测量和定位应用。例如,在医疗领域,红外激光二极管可以用于手术刀、激光扫描仪等设备;在工业生产中,红外激光二极管可以用于切割、焊接、打标等工艺。

随着科技的不断发展,红外激光二极管的应用领域也在不断扩大。除了传统的医疗和工业领域,红外激光二极管还在许多新兴领域中发挥着重要作用。例如,在无人驾驶领域,红外激光二极管可以用于车辆的感知系统,帮助车辆识别障碍物、行人和其他车辆;在安防领域,红外激光二极管可以用于监控摄像头,提高监控系统的清晰度和准确性。

然而,红外激光二极管的应用前景并不止于此。随着技术的不断进步,我们相信红外激光二极管将在更多领域中发挥重要作用。例如,在环保领域,红外激光二极管可以被用于监测空气质量、土壤湿度等环境参数;在科学研究领域,红外激光二极管可以被用于探索未知的宇宙奥秘。

总的来说,红外激光二极管是一种具有巨大潜力的技术元件。它的出现不仅为我们的生活带来了便利,也为许多新兴领域的发展提供了可能。随着科技的不断发展,我们期待红外激光二极管在未来能够发挥出更大的作用。

总结

红外激光二极管作为一种特殊的发光元件,已经在许多领域中得到了广泛应用。它的工作原理是将电能转化为光能,产生红外激光脉冲,具有非常高的能量和精度。随着科技的不断发展,我们相信红外激光二极管将在更多领域中发挥重要作用。在未来,我们期待红外激光二极管能够为我们的生活和各行各业带来更多的便利和进步。

同时,我们也应该关注红外激光二极管的发展趋势。随着技术的不断进步,我们相信红外激光二极管的性能和效率将会得到进一步提升。此外,我们也期待红外激光二极管能够与其他技术相结合,开发出更多具有创新性的应用产品。

八、二极管电压

二极管电压的原理及应用

二极管电压是电子技术中的重要概念,它描述了二极管两端之间的电位差。在许多电子设备中,二极管电压的正确理解和应用对于设备的正常工作至关重要。

首先,我们来了解一下二极管的原理。二极管是一种单向导电的电子元件,它只能允许电流从一个方向通过。这个特性是由其内部的PN结构决定,当电流从二极管的一个端点流向另一个端点时,会形成电压降。这个电压降就是我们所说的二极管电压。

对于不同类型的二极管,电压值可能会有所不同。例如,稳压管通常需要一个相对较高的电压才能正常工作,而肖特基二极管则需要一个相对较低的电压。这些差异使得在不同的应用场景中选用适当的二极管非常重要。

了解二极管电压之后,我们来看看它在哪些场合会用到。在电源电路中,二极管通常用于整流电路,将交流电转换为直流电。在这个过程中,二极管会承受一定的电压降。因此,选择适当的二极管对于电路的正常工作至关重要。此外,在开关电源中,二极管也经常被使用来控制电流的方向和大小。

除了电源电路,二极管电压也在许多其他电子设备中发挥着重要作用。例如,在晶体管放大器中,二极管用于隔离不同的信号路径,以防止信号之间的相互干扰。在通信设备中,二极管也经常被用来实现光电转换和电子转换。

总的来说,二极管电压是电子技术中不可或缺的一部分。正确理解和应用二极管电压对于理解电子设备的正常工作至关重要。在选择和使用二极管时,需要根据其应用场景和特性来选择适当的二极管,以确保电子设备的正常工作。

九、红外线发光二极管led灯珠所需电压多大?

你要查红外线发光管的峰值功率,为了使发射距离增大,一般都提高电压,加大占空比发射的,我基本上都是用9伏的。

正常电压都是2.3V以下。

十、一二极管最小电压?

锗二极管最小导通电压为0.2伏,硅管为0.6伏。

根据二极管的封装材料不同,二极管分为硅二极管和锗二极管。这两种二极管的导通条件是不一样的,但是方法是一样的。就是对二极管的阴极和阳极施加不同的电压,且阳极的电压大于阴极的电压。对于硅二极管这个电压大于0.7V,对于锗二极管电压大于0.3V,当电压满足条件时二极管就会导通。

所以二极管的导通条件就是阳极电压大于阴极电压,对于硅二极管最小电压是0.7V,锗二极管最小电压是0.3V。