开关型和电压型浪涌保护器的区别?
一、开关型和电压型浪涌保护器的区别?
区别在于:
开关型和电压型浪涌保护器的作用不同。
1.开关型浪涌保护器为间隙放电型器件,其雷电能量泄放能力大,在线路上使用的主要作用是泄放雷电能量。
2.限压型浪涌保护器为氧化锌压敏电阻器件,其雷电能量泄放能力小,但其过电压抑制能力好,在线路上使用的主要作用是限制过电压。
二、电流电压故障保护的原因?
1误动作原因分析
⑴低压电路开闭过电压引起的误动作:
由于操作引起的过电压,通过负载侧的对地电容形成对地电流。在零序电流互感器的感应脉冲电压并引起误动作。此外,过电压也可以从电源侧对保护器施加影响(如触发可控硅的控制极)而导致误动作。
⑵当分断空载变压器时,高压侧产生过电压,这种过电压也可导致保护器误动作。
对策和解决办法:
①选用冲击电压不动作型保护器;
②用正反向阻断电压较高的(正反向阻断电压均大于1000V以上)可控硅取代较低的可控硅。
⑶雷电过电压引起的误动作:
雷电过电压通过导线、电缆和电器设备的对地电容,会造成保护器误动作。
解决的办法是:
①使用冲击过电压不动作型保护器;
②选用延时型保护器。
⑷剩余电流和电容电流引起的误动作:
在一般情况下,三相对地电容差别不大,因此,可以认为:三相的对地形成的电流矢量和为零,保护器不会动作。如果开关电器各相合闸不同步或因跳动等原因,使各相对地电容不同等充电,就会导致保护器误动作。
解决的办法是:
①应尽可能减小导线的对地电容,如导线布置远离地面;
②适当调大保护器的动作电流值;
③保护器尽可能靠近负载安装;
④在无法避免电容电流的地方,应使用合闸同步性能良好的开关电器。
⑸高次谐波引起的误动作:
高次谐波中的3次、9次谐波属于零序对称制。在这种情况下,电流通过对地泄漏电阻和对地电容就容易使保护器误动作。
解决的办法是:
①尽量减少电源和负载可能带来的高次谐波;
②尽量减少电路的对地泄漏和对地电容;
③保护器尽可能靠近负载安装。
⑹负载侧有变频器引起的误动作:
有些用户的电气设备上有变频器(例如彩色胶印机等),受其影响保护器极易发生误动作。
解决方法是:
①从制造厂家来讲,主要是设法提高保护器的抗干扰能力,通常可采用双可控硅电路或采用分立元件线路板取代集成电路板。
②从用户角度讲应选用抗电磁干扰性能好的产品。
⑺变压器并联运行引起的误动作:
电源变压器并联运行时,由于各电源变压器PE线阻抗大小不一致,因而供给负载的电流并不相等,其差值电流将经电源变压器工作接地线构成回路,并被零序电流互感器所检测,造成零序电流互感器误动作。
解决办法是:将并联的两台电源变压器的中性点先连起来后再接地。
⑻保护器使用不当或负载侧中性线重复接地引起误动作:
三极剩余电流动作断路器用于三相四线电路中,由于中性线中的正常工作电流不经过零序电流互感器,因此,只要一启动单相负载,保护器就会动作。
此外,剩余电流动作断路器负载侧的中性线重复接地,也会使正常的工作电流经接地点分流入地,造成保护器误动作。
避免上述误动作的办法是:
①三相四线电路要使用四极保护器,或使用三相动力线路和单相分开,分别单独使用三级和两极的保护器;
②增强中性线与地的绝缘;
③排除零序电流互感器下口中性线重复接地点。
2拒动作原因分析
⑴自身的质量问题:
若保护器投入使用不久或运行一段时间以后发生拒动,其原因大概有:
①电子线路板某点虚焊;
②零序电流互感器副边线圈断线;
③线路板上某个电子元件损坏;
④脱扣线圈烧毁或断线;
⑤脱扣机构卡死。
解决的办法是及时修理或更换新保护器。
⑵安装接线错误:
安装接线错误多半发生在用户自行安装的分装式剩余电流动作断路器上,最常见的有:
①用户把三极剩余电流动作断路器用于单相电路;
②把四极剩余电流动作断路器用于三相电路中时,将设备的接地保护线(PE线)也作为一相接入剩余电流动作断路器中。
③变压器中性点接地不实或断线。
三、保护压板电压是交流还是直流电压?
保护装置由交流及直流两部分构成高压保护装置正常工作时的电源是由交流部分获得。其保护电路动作时的电源是储能电路提供的直流电。
一般情况下开关柜保护压板是一块连接片,各种保护(如过流、速断等)均有相应的一块保护输出压板。当需要将某种保护退出时,断开相应的连接片即可。交流,380V和6KV是配电网的两个电压等级,电网供电都是交流电。
四、哪个开关没有低电压保护?
如果是有低压保护开关的机型的话,低压保护开关阀体在压缩机吸气管上或者是气液分离器和四通换向阀之间;大多数在吸气管上。低压保护开关的信号线直接从阀体引到主控制电路上面的。
3匹以下空调没有低压保护开关的,一般至少3匹或3匹以上的空调器才会设置高低压保护开关,有的话,就在室外机的压缩机回气管不远位置。
五、保护焊电流电压怎么调最佳?
焊机的电流和电压按照下列程序调节;
1.打开保护气瓶阀门,确认气瓶压力正常;打开焊机电源,确认加热减压流量计工作;加热5分钟;
2.拆开焊丝包装,把焊丝盘装在送丝机构的盘轴上,打开压紧手柄,用钳子把焊丝头剪成平头,焊丝头应当从焊丝盘下方水平插入送丝滚轮的槽轮;插入送丝软管;
3.关闭压紧手柄,把焊枪平摊在地面上完全伸直,按动远控盒上的白色快速送丝按钮,送进焊丝直到从导电嘴露头为止,如果是旧焊枪,可以先卸下导电嘴,然后按动微动开关送丝,露头后再装上; 用钳子把焊丝端部剪成45度尖角;
4.准备好试验钢板,目视焊机的电压表和电流表,左手有意识的把远控盒上的电压调低一些,右手握住焊枪,在试验钢板上引弧施焊;
如果确实电压偏低,握枪的右手会感觉到焊枪头部的强烈振动,听到电弧啪啪的爆断声。这是电压太低,送丝速度远远大于熔化速度,电弧引燃后又被焊丝踏灭时发出的响声;
如果实际上电压偏高,电弧可以引燃,但是弧长过长,焊丝端部形成巨大熔球,如果熔化速度超过送丝速度太多,电弧会一直返烧到导电嘴,把焊丝和导电嘴熔化在一起,送丝终止,电弧熄灭。这对导电嘴和送丝机构都会造成损坏,所以引弧时应确认电压没有偏高;
5.调节焊接电压旋钮,慢慢提升焊接电压,焊丝熔化速度加快,爆断的噼啪声渐渐变成平稳的沙沙声;
6..观察电压表和电流表,如果电流低于预定值,先提高焊接电流,再提高焊接电压;如果电流高于预定值,先降低焊接电压,再降低焊接电流;
7.焊丝伸出长度:又称为焊丝干伸长度。对于气体保护焊来说是一个非常重要的参数。合适的焊丝伸出 长度可以使得焊丝得到充分的电阻加热,更加便于实现焊丝端部熔滴的形成和过渡。焊丝伸出长度偏短时往往飞溅很大,偏长不仅容易产生大熔滴的飞溅,还导致保护不良。
8.焊接电压与焊接电流匹配时的现象:电弧稳定燃烧,发出细密的沙沙声,手感焊枪头部略有振动,软硬适度,电压表摆动不超过5V,电流表摆动不超过30A,在手的握把处不应出现振动;如果手感焊枪头部过于绵软,几乎没有振动,可随心所欲地移动焊枪,通过面罩观察,焊丝飘在熔池上方,端部形成大熔球,时而出现大熔滴飞溅,说明电压偏高;如果手感焊枪头部发硬,振动明显,可听到爆断声,移动焊枪有阻力,通过面罩观察,焊丝插入熔池,飞溅多,说明电 压偏低;为了防止未熔合,电压适当偏高是有利的。
9.熔化极气体保护焊,焊接电流的调节是调节焊丝的送丝速度,焊接电压的调节是调节焊丝的熔化速度。当送丝速度和熔化速度相等时,电弧就稳定燃烧。
六、通用保护焊机怎么调电流电压?
新手调节不好电流和电压的匹配,主要原因是不知道这两者之间的关系,不知道这两者各起到什么作用。
电流是控制焊缝熔深的(电流也可以理解为送丝速度,电流越大,在电压不变的情况下,单位时间内送出的焊丝越多,前提是电压足以让焊丝熔化),电压是控制熔宽的。
知道这两者各自的作用之后,我再说一个看似较笨但最见效的办法:
第一步,先把电流旋钮调到最小,把电压旋钮调到最大,试焊一下,此时不要动电压旋钮,逐步调大电流,到能正常焊接就停下;
第二步,反过来,就是把电流旋钮先调到最大,然后把电压旋钮调到最小,试焊一下,不要动电流旋钮,逐步增加电压,一直到能正常焊接就停下;
相信,经过这样的调试之后,你应该已经感受到电流和电压各自的作用了吧。
第三步,把电流和电压旋钮都调到最小,逐步增大电压和电流(过程中需要反复调节),直到找到你认为焊缝成型最好,声音最柔和,并且是你自己能控制得住的匹配。
这时候就可以恭喜你了,你找到方法了。立焊、平焊、横焊、仰焊各种焊接位置对应的电流和电压你都能调节出来了。
具体现象及原因
(1)电压偏低,握枪的右手会感觉到焊枪头部发硬,焊枪头部的强烈振动,可听到爆断声,移动焊枪有阻力,通过面罩观察,焊丝插入熔池,飞溅多。
【提示】这是因为电压太低,送丝速度远远大于熔化速度,电弧引燃后又被焊丝踏灭时发出的响声。
(2)电压偏高,焊枪头部过于绵软,几乎没有振动,可随心所欲地移动焊枪,通过面罩观察,焊丝飘在熔池上方,端部形成大熔球,时而出现大熔滴飞溅。
【提示】如果熔化速度超过送丝速度太多,电弧会一直返烧到导电嘴,把焊丝和导电嘴熔化在一起,送丝终止,电弧熄灭。这对导电嘴和送丝机构都会造成损坏,所以引弧时应确认电压没有偏高。
(3)电压与电流匹配时的现象:电弧稳定燃烧,发出细密的滋滋声,手感焊枪头部略有振动,软硬适度,电压表摆动不超过5V,电流表摆动不超过30A,在手的握把处不应出现振动。
【现场操作】
1)调节焊接电压旋钮时,要慢慢提升焊接电压,焊丝熔化速度加快,爆断的噼啪声渐渐变成平稳的滋滋声;
2)观察电压表和电流表,如果电流低于预定值,先提高焊接电流,再提高焊接电压;如果电流高于预定值,先降低焊接电压,再降低焊接电流。
七、接近开关交流电压都有几种?
1、接近开关交流电压有5种。
2、接近开关交流电压有交流12伏、交流24伏、交流36伏、交流110伏、交流220伏等5种。但最常用的有12-36伏的宽电压接近开关和220伏的接近开关。
3、接近开关分类多样,按电源类型分有交流和直流两种;按电压等级分有12伏、24伏、36伏、110伏、220伏等5种。
八、交流电机保护开关老是跳?
应重点考虑交流接触器、热继电器及电源电压等原因。可能由下列因素造成频繁跳闸:
电源电压低.电动机绕组电流增大.温度升高对绝缘有损坏,易发生故障.造成电动机损坏.所以电动机应有欠压保护装置。中小型三相交流异步电动机一般采用交流接触器.磁力启动的电磁线圈兼作欠压保护.电磁线圈对电压值的要求为额定电压的85%-105%.电磁铁才能可靠吸合。当在额定电压的70%-80%时铁芯吸合不良。额定电压的70%以下时电磁铁会释放,以确保电动机安全运行。
当供电线路上接有大容量电动机频繁启动.或多台电焊机引弧时.都会使供电线路电压瞬时急剧下降,造成线路电压不稳定。出现线路电床忽高忽低.致使线路上所接的交流接触器、磁力启动器等欠压保护的磁力线圈铁芯释放而频繁跳闸。
九、轨道灯直流电压
### 轨道灯直流电压的重要性和应用在现代城市规划中,轨道灯成为了一个不可或缺的元素,为城市的道路和人行道提供了重要的照明服务。轨道灯的设计和运行涉及到许多因素,其中之一就是直流电压的选择。本文将探讨轨道灯直流电压的重要性以及其在实际应用中的作用。
直流电压与轨道灯
轨道灯通常由一系列LED灯组成,这些灯需要电源来提供所需的电力。在选择电源时,直流电压的选择是至关重要的因素。
直流电压是指电流方向始终保持相同的电压。与之相反,交流电压的电流方向是周期性变化的。虽然交流电压在传输过程中损耗较小,但在轨道灯上使用直流电压会带来许多优势。
轨道灯直流电压的重要性
1. 能源效率:使用直流电压可以提高轨道灯的能源利用效率。直流电流可以更有效地供应给LED灯,减少能源的浪费。这在长时间运行的轨道灯系统中尤为重要,可以显著降低能源开销。
2. 光质量:直流电压提供了稳定的电流,可以确保LED灯提供高质量的光线。与交流电压相比,直流电压消除了光线的闪烁和颜色的变化。这使得轨道灯提供更加舒适和一致的照明效果。
3. 控制和调节:使用直流电压可以更容易地对轨道灯进行控制和调节。直流电源可以提供更精确的电流输出,允许灯具的亮度和颜色进行细致的调整。这对于特定的照明需求和设计要求非常有用。
4. 维护成本:直流电压可以降低轨道灯系统的维护成本。直流电源相对来说更加稳定可靠,减少了由于电压的不稳定性而导致的损坏和故障的风险。这意味着减少了维修和更换零件的频率,节省了人力和物力资源。
直流电压在轨道灯中的应用
轨道灯系统中的直流电压主要通过转换和调节装置实现。这些装置可以将交流电源转换为所需的直流电压,并确保提供给轨道灯的稳定电流。
此外,直流电压还可以与智能照明系统集成,以实现更高级的照明控制。通过连接传感器和调光设备,可以根据环境需求自动调整照明亮度和颜色。这种灵活性使得轨道灯系统能够更好地适应不同地区和不同场景的需求。
在现代城市的照明规划中,轨道灯直流电压的应用变得越来越重要。随着LED技术的不断发展和成熟,直流电压在轨道灯中的应用将进一步提升灯具的效率和性能。
总结
轨道灯直流电压在现代照明系统中的重要性不容忽视。它能够提高能源效率,提供高质量的光线,便于控制和调节,并降低维护成本。随着技术的进步,直流电压将继续在轨道灯中发挥重要作用,为城市的照明需求提供更好的解决方案。
了解轨道灯直流电压的重要性,不仅可以引领我们在城市规划中更好地运用照明系统,还可以为我们提供照明的效果和节能的同时,减少对环境的影响。
十、电流电压联锁速断保护的原理?
电流速断保护的工作原理
电流速断保护、顾名思义、就是指电流发生变化或超过预先设置的保护定值范围时,而瞬间动作的电流保护。书面定义为:对于反应短路电流幅度增大而瞬间动作的电流保护,称为电流速断保护,为了保证其微机保护装置选择性,一般只能保护线路的一路分,假定每天线路上均装有电流速断保护,当线路上发生故障时,希望保护能瞬间动作,他的保护范围最好能达到本线路长的100%,但是这种愿望能否实现,需要作具体分析。
为了解决这个矛盾可以有两种方法,通常都是优先保证动作的选择性,即从保护装置启动参数的整定上保证下一条线路出口短路时不启动,在微机保护技术中,这又称为按躲开下一条线路出口处短路条件整定,另一种办法是在个别情况下,当快速切除故障是首要条件时,用自动重合闸来纠正这种无选择性动作。
电网中电气设备发生故障时,短路电流很大,根据继电器的基本动作原理可知,如果预先通过计算,将此短路电流整定为继电器的动作电流,就可对故障设备进行保护。过电流保护和电流速断保护正是根据这个原理而实现的。为了保证动作的选择性,根据短路电流的特点(故障点越靠近电源,则短路电流越大),过电流保护是带有动作时限的,而电流 速断保护则不带动作时限,即当短路发生时,它立即动作而切断故障,故它没有时限特性,常用来和过流保护配合使用。
速断保护不能保护线路全长,只能有选择性地保护线路一部分,余下部分为速断保护的死区。为避免上述情况,速断保护也可做成略带时限,称为时限电流速断保护。它和无时限电流速断配合,以消除电流速断保护的动作死区。
推荐阅读