buck电路的反馈工作原理?
一、buck电路的反馈工作原理?
当开关管Q1驱动为高电平时,开关管导通,储能电感L1被充磁,流经电感的电流线性增加,同时给电容C1充电,给负载R1提供能量。
二、buck电路自举电容工作原理?
自举电容,内部高端MOS需要得到高出IC的VCC的电压,通过自举电路升压得到,比VCC高的电压,否则,高端MOS无法驱动。自举是指通过开关电源MOS管和电容组成的升压电路,通过电源对电容充电致其电压高于VCC。最简单的自举电路由一个电容构成,为了防止升高后的电压回灌到原始的输入电压,会加一个Diode.自举的好处在于利用电容两端电压不能突变的特性来升高电压。
如果在MOS的Gate与Source间接入一个小电容,在MOS未导通时给电容充电,在MOS导通,Source电压升高后,自动将Gate极电压升高,便可使MOS保持继续导通。
三、buck电路原理?
1. 开关整流器 2. 传说中的“伏-秒平衡” 3. 同步整流死区时间 三部分详细介绍Buck电路的工作原理。
Part 1 开关整流器基本原理
在[0,Ton]期间,开关导通;在[Ton,Ts]期间,Q截止。设开关管开关周期为Ts,则开关频率fs=1/Ts。导通时间为Ton,关断时间为Toff,则Ts=Ton+Toff。设占空比为D,则D=Ton/Ts。改变占空比D,即改变了导通时间Ton的长短,这种控制方式成为脉冲宽度调制控制方式(Pulse Width Modulation, PWM)。
Buck电路特征• 输出电压≤输入电压 • 输入电流断续• 输出电流连续 • 需要输出滤波电感L和输出滤波电容C
Part 2 传说中的“伏-秒平衡”
伏秒原则,又称伏秒平衡,是指开关电源稳定工作状态下,加在电感两端的电压乘以导通时间等于关断时刻电感两端电压乘以关断时间,或指在稳态工作的开关电源中电感两端的正伏秒值等于负伏秒值。
在一个周期 T 内, 电感电压对时间的积分为 0,称为伏秒平衡原理。正如本文开头视频中指出,任何稳定拓扑中的电感都是传递能量而不消耗能量, 都会满足伏秒平衡原理。
Part 3 同步整流死区时间
同步整流是采用极低导通电阻的的MOSFET来取代二极管以降低损耗的技术,大大提高了DCDC的效率。
物理特性的极限使二极管的正向电压难以低于0.3V。对MOSFET来说,可以通过选取导通电阻更小的MOSFET来降低导通损耗。
在开关电源系统中,死区时间(Dead Time)是指为了避免两个晶体管开关同时导通而引入的屏蔽时间。
连接的两个晶体管开关通过交互地闭合和关断来决定线圈中电流的增减。为避免两个晶体管同时导通造成不必要的电流浪涌,即需控制电路在开关动作引入死区特性。在死区时间内,需要完成对已导通晶体管的关断和另一晶体管的导通。死区时间• 设置必要的死区时间以防止短路。• 死区时间越小,体二极管传导越少。• 死区时间越小,损耗越小,效率越高
四、fly buck电路原理?
Flyback转换器工作原理
Flyback不同于Buck-Boost的地方,仅在于将电感器衍生成一个“耦合电感”,也就是俗称的“变压器”,但不同于一般变压器,耦合电感“实实在在”的存储能量,不只是变压器的磁化能量。
就是因为将电感变成耦合电感,所以可以将初/次级隔离,而且利用匝数比的控制,使转换器的工作点设计更有弹性。另外,多组输出的应用更简单容易。
五、双buck电路原理?
buck电路工作原理是输出电容上电压由微小的纹波和较大的直流分量组成,宏观上可以看作是恒定直流,这就是开关电路稳态分析中的小纹波近似原理。
六、异步buck电路原理?
BUCK电路:输出电压低于输入电压,即降压。另外还有BOOST和BUCK-BOOST电路,这里暂不做分析。降压电路的基本拓扑结构如下:(Vout《Vin)
其中,开关相当于一个PWM调制器,设置合适的占空比,得到的电压为方波,二极管在开关关断的状态下,为LC提供了一个回路,LC简单来说就是一个滤波器,将得到的输出电压和输出电流进行滤波,分开来讲,电感用于抵抗电流的变化,电容用于抵抗电压的变化,因此,我们可以得到稳定的输出电压和输出电流。
当开关处于ON的状态时,二极管处于截止状态:
电感上的电压与电流可以由如下公式计算得到:
经电感和电容滤波后,输出电流/电压由方波变成较平稳的纹波电压/电流。
在电路应用当中,一般不希望存在较大纹波,根据以上给出的公式可以发现,通过增大开关频率,电感体积,或者电容可以减小输出电压/电流的纹波。同样的,为了减小整个电源模块的体积,也可以通过增大开关频率来实现,增大开关频率可以减小电容电感的体积,电源电路的设计当中通常是电感电容的占用面积最大,这也是为何许多公司选择将大的电感或电容从电路中移除,采用用户外接的方式来达到同样的效果。但是频率的增大也会带来相应的坏处,如降低电源效率,增加开关管损耗以及二极管损耗,电路的功耗也会相应增加。因此在设计电源模块时,需结合实际情况考虑其体积以及电路损耗。
BUCK电路的设计可分为四步:
根据输入输出电压确定开关转换器的占空比:DC=Vout/Vin;
确定其输入输出功率,从而决定其带负载能力;
确定相应的开关频率,得到每个脉冲周期内的能耗;
根据已知的脉冲周期内的能量以及输出电流,可以计算出电感的大小:L=2E/I2;
根据需要选择相应的MOS开关管,二极管以及电容。
以上只是总结了基本的BUCK电路工作和设计原理,然而实际情况下的电源设计需要考虑的因素将会更为复杂。
七、buck升压电路原理?
buck电路工作原理是输出电容上电压由微小的纹波和较大的直流分量组成,宏观上可以看作是恒定直流,这就是开关电路稳态分析中的小纹波近似原理。
boost电路即直流转换成直流的升压电路;
buck电路即直流转换成直流的降压电路。
基本元件是开关器件+电感+快恢复二极管电容等组成的两种电路拓扑方式。
八、buck boost工作原理?
buck BOOST电路的基本原理如下:
开关导通时, 输入电压流向电感, 电感电流线性增加,电感储能增加,电源向电感转移电能。
开关断开时, 电感电压等于输入电压减去输出电容的电压, 电感电流减少,电感储能减少, 电感储能向负载转移电能。
通过这样不断的开关实现了DCDC升压,但是这种结构得到的电流比较小,通常在几百毫安,而且效率不高。
九、buck电路的工作特性?
Buck电路,又称降压电路,其基本特征是DC-DC转换电路,输出电压低于输入电压。输入电流为脉动的,输出电流为连续的。
buck电路的工作原理即小波纹近似原理,buck电路的输出电容由较大的直流分量和细小的波纹分量组成,可以将其近似看作一种恒定直流,因此可以改变电路由于某些原因导致电压升高的情况,这就是buck电路的工作原理。
十、simo buck 工作原理?
当开关管Q1驱动为高电平时,开关管导通,储能电感L1被充磁,流经电感的电流线性增加,同时给电容C1充电,给负载R1提供能量。
当开关管Q1驱动为低电平时,开关管关断,储能电感L1通过续流二极管放电,电感电流线性减少,输出电压靠输出滤波电容C1放电以及减小的电感电流维持。
推荐阅读