为什么小电流接地和大电流接地都有经消弧线圈接地?
一、为什么小电流接地和大电流接地都有经消弧线圈接地?
因为中性点非直接接地系统发生单接地故障时,接地点将通过接地线路对应电压等级电网的全部对地电容电流。
如果此电容电流相当大,就会在接地点产生间歇性电弧,引起过电压,从而时非故障相对地电压极大增加。
在电弧接地过电压作用下,可能导致绝缘损坏,造成两点或多点的接地短路,使事故扩大。
二、大电流为什么要接地?
不仅是110KV电压电网是中心点直接接地系统,从110KV往上的交流电压电网都是中心点直接接地系统。这是因为:高电压输电线路的路径都较长,当线路中间发生接地故障时,如果不是中心点接地系统,故障点只能流过线路的电容电流,而流过的电容电流由于存在沿途大地回路的阻抗将降低很所,使得端头的保护灵敏度很低,不能立即跳闸断开故障。而采用中心点直接接地系统后,一旦发生单相接地故障,就是有一相电压加在故障点与电源中心点之间,短路电流将增加很多倍,使得端头的保护能够很容易判断事故而跳闸断开故障点。
而实际上最主要的原因是:刚制造110KV设备的时候,这还是一个很高的电压,如果采用中心点不接地系统,每一个110KV上的电气设备的对地绝缘水平都必须是110KV,这对于造价和技术上来讲都有困难,而如果是中心点直接接地系统,每一个电气设备对地的绝缘水平就是110/1.732=63KV了,也就是:每一个接在中心点直接接地系统的110KV上的电气设备实际绝缘水平,只要满足63KV就可以了,这可以降低多少投资?因此,在110KV往上的交流电压等级中,就都采用这种方式
三、大电流接地计算公式?
10kv电缆为例:
10kv电缆接地电流为866A
10kv的电缆所带负荷容量为3000kw至5000kw,
三相变压器额定电流的计算公式为:Ⅰ= 变压器额定容量 ÷ (1.732 × 变压器额定电压)。
根据负荷计算公式:
功率=1.732乘以10kv乘以电流,
可得电流在173A至288A之间。
而且10KV线路转接容量应不大于15000KVA,
按P=1.732 X U X I计算,
I=15000KVA/10KV 1.732=866A。
四、单相接地电流大还是两相接地电流大?
一般两相短路电流大于单相短路或单相接地故障电流,所以两相短路和两相短路接地时的故障电流是一样的。
短路电流的大小也是符合欧姆定律:I=U/R,所以在同一交流电路中短路阻抗越小的短路电流越大,简单的说就是越接近电源的短路电流越大。
如果同一回路的同一位置来比较相间直接短路和相间接地短路的电流,理论上直接接地短路电流大于相间接地短路电流,因为两相接地短路还有零序阻抗存在,相间短路没有零序阻抗,自然短路阻抗就小点了。
五、大电流接地系统和小电流接地系统的优缺点?
1、大电流接地系的优点是过电压数值小,中性点绝缘水平低,因而投资小,其缺点是单相接地电流大,必须迅速切断电流,增加了停电机会。
2、小电流接地系统的优点是可靠性高。出现单相接地故障这样的情况,一般来讲,是系统出现了一定的不可避免的问题,通常是其在很短的时间之内,没有办法形成一个回路,所以此时它的接地电流在数值上相对偏小,如果再与负荷数值相比较,那么其数值一样的偏小。在这样的情况之下,还能保证对称的只有它的线电压,也正因如此,负荷供电不会受到一点影响,系统继续运作1~2 h的时间,不需要马上除接地相,断路器的道理也不尽相同,这样对设备短时间内不会有任何影响,进而确保对用户的不间断连续供电,相对来说,提高供电可靠性。小电流接地系统也存在缺点,大体表现在发生单相接地故障的时候,没有办法快速认定故障发生在哪条线路之上。因为此类故障导致的结果就是相电压升高,而这样的结果对系统性能产生十分显著的影响,所以需要快速的找到问题所在,同时加以解决。
六、电流接地与小电流接地划分标准?
在我国,电力系统中性点接地方式有三种:
(1)中性点直接接地方式。
(2)中性点经消弧线圈接地方式。
(3)中性点不接地方式。
中性点直接接地系统(包括经电阻柜接地的系统)发生单相接地故障时,接地短路电流很大,这种中性点直接接地的系统称为大电流接地系统。采用中性点不接地或经消弧线圈接地的系统,当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小很多,这种中性点不接地或经消弧线圈接地的系统称为小电流接地系统。
大电流接地系统与小电流接地系统的划分标准是依据系统的零序电坑序X0与正序电抗X1的比值X0/X1。我国规定:凡是X0/X1≤4~5的系统属于大接地电流系统,X0/X1>4~5的系统则属于小接地电流系统。肴些国家(如美国与某些西欧国家)规定,X0/X1>3.0的系统为小接地电流系统。
七、全球接地电流检测-了解接地电流的重要性及检测方法
什么是接地电流?
接地电流是指电流从电源或设备的外壳、结构或其他导电部件流入地的电流。它是一种可能会产生电击、火灾甚至对设备造成损坏的潜在危险。因此,对于接地电流的检测变得至关重要。
为什么需要进行接地电流检测?
接地电流的检测是为了确保电气系统的安全性和正常运行。以下是一些进行接地电流检测的原因:
- 安全性保障:接地电流可能会导致触电事故,对人员和设备的安全造成威胁。
- 设备保护:接地电流可能导致设备损坏,影响设备的正常运行。
- 法规要求:在一些国家和地区,针对接地电流的检测已被法律法规规定。
- 预防火灾:接地电流过大可能会引起火灾,及时检测可以提前发现问题,预防火灾的发生。
如何进行接地电流检测?
接地电流的检测需要借助专用的仪器和设备。以下是常见的接地电流检测方法:
- 使用接地电流检测器:接地电流检测器是一种专门用于检测电气系统中接地电流的仪器。通过将检测器连接到电源或设备的接地点,它可以快速准确地检测出接地电流的存在。
- 电流变压器:电流变压器是一种将接地电流从高电流变为低电流的装置。它可以通过变压器进行测量和检测。
- 接地电阻测量:接地电阻测量是一种间接检测接地电流的方法。它通过测量接地电阻来推测接地电流的大小。
全球接地电流检测的现状和发展
随着电气系统的普及和发展,全球范围内对接地电流检测的重视程度越来越高。许多国家和地区已经制定了相关的法规和标准来规范接地电流检测的要求。同时,接地电流检测仪器和设备的技术也在不断进步和发展,更加精准、可靠。
总结
全球接地电流检测是确保电气系统安全和设备正常运行的重要措施。通过进行接地电流检测,可以及时发现和解决接地电流问题,提高电气系统的安全性,避免潜在的风险。综上所述,全球接地电流检测的重要性日益突显,技术和标准的进步也为接地电流检测提供了更多选择和可能性。
感谢您阅读本文,希望通过了解全球接地电流检测,您对接地电流的重要性和检测方法有了更清晰的认识。如果您在今后的工作中或者生活中遇到接地电流相关的问题,本文提供的信息可以帮助您解决问题和保证安全。
八、大接地电流系统,单相接地故障特点?
当某一相发生接地故障时,必然产生一个单相接地故障电流,此时检测到的零序电流,是三相不平衡电流与单相接地电流的矢量和。零序电流的形成和计算比较复杂,在电力系统非对称故障分析时,用“对称分量法”,把一个不对称分量分解成“正序”“负序”“零序”三种分量来分别计算,最后合成实际的故障电流。由于各种短路条件的不同,零序阻抗、零序电源、相位的变化等等,短路电流在零线上反应的大小也是不同的,单相接地短路电流在零线上可以小于两相接地和三相接地,也可以大于两相接地和三相接地等等,因为零序电流的不确定性,所以零序电流保护只是一种补充保护,补充其它保护的不足。
九、大电流接地系统单相接地的特点?
大接地电流系统:特点是单相接地时故障无论是瞬间还是永久性的,由于电弧不能自动熄灭,故障回路一律跳闸。优缺点:
• 供电可靠性差(必须增强备用容量的控制切换功能)。
• 瞬间故障电弧通过跳闸完全熄灭(不会出现很 高的间歇性电弧过电压,限制到2.8倍相电压 以下)。
• 单相接地电流大易引起设备损坏或火灾。
• 在中性点及故障点附近会形成危险的跨步电压和接触电压,对人身安全不好。
• 通信干扰大;
• 继电保护选择性好;
• 运行管理简单。
十、小电流接地系统和大电流接地系统的区别是什么?
小电流接地系统--小电流接地系统:中性点不接地或经过消弧线圈和高阻抗接地的三相系统,又称中性点间接接地系统。
当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,所以这种系统被称为"小电流接地系统"。