您现在的位置是:主页 > 电流 > 正文

电流互感器计算口诀?

电流 2024-08-31 20:11

一、电流互感器计算口诀?

电流互感器口诀有:仪用电流互感器,实际是台变压器;常用低压变高压,电流刚好成反比;配接仪表测大流,电度计量也必须。仪表显示成变比,得出数值为实际等等。

1电流互感器选用口诀

仪用电流互感器,实际是台变压器。

常用低压变高压,电流刚好成反比。

配接仪表测大流,电度计量也必须。

仪表显示成变比,得出数值为实际。

二次两端接仪表,K1、K2来标记。

额定电流五安培,配用仪表要注意。

两端不可呈开路,不要串联熔断器。

防止触电保安全,铁心、K2要接地。

一次串入电路中,L1、2来标记。

1进2出去负载, 三相测量是必须。

常用测量一变比,使用单比互感器。

本身只设二次线,测量线路即为一。

2电流互感器安装注意事项

1、电流互感器极性不能接反,相序、相别应符合设计及规程要求,对于差动保护用的互感器接线,在投入运行前必须测定两臂电流相量图以检验接线的正确性;

2、按图施工,接线正确,导线两端编号标记应清楚,标号范围符合规程要求;

3、二次回路导线或电缆,均应采用铜线,电流互感器回路导线截面不应小于2.5mm2,电压互感器回路导线截面不应小于1.5mm2;

4、二次回路对地绝缘应良好,电压回路和电流回路之间不应有混线现象;

5、二次回路导线排列应整齐美观,导线与电气元件及端子排的连接螺丝必须无虚接松动现象,导线绑把卡点距离应符合规程要求

二、如何选用电流互感器型号?

电压互感器二次侧大多采用100V。有100V/5V的型号,通常用于PCB安装。200mA转为电压信号的霍尔传感器估计不好找。你的电压和电流都是小信号,建议不要采用传感器。1、电压采用电阻分压,输出AD可接收的信号。分压器总电阻不易太小,一般20k~10M较合理。2、电流通过取样电阻直接转变为电压信号,取样电阻不要太大,以免影响测试回路,建议取0.5Ω~1Ω,转变为0~100(或200)mV的电压信号,其后通过放大电路放大至AD可接收的信号。与标准互感器配套的仪表通常采用上述原理。

三、电流互感器计算口诀2020?

1000/5的电流互感器,变比为200,即,当二次侧电流为1A时,一次电流为200A。

一般电路互感器有多组接线端,1S1、1S2;2S1、2S2;3S1、3S2等,其对应不同的精度,也有不同变比的。包括:计量、测量、保护等,参照标牌选好对应的变比即可计算。

四、电流互感器选用计算公式?

电流互感器的参数选择计算

本文所列计算方法为典型方法,为方便表述,本文数据均按下表所列参数为例进行计算。

项目名称

代号

参数

备注

额定电流比

Kn

600/5

额定二次电流

Isn

5A

额定二次负载视在功率

Sbn

30VA(变比:600/5)

50VA(变比:1200/5)

不同二次绕组抽头对应的视在功率不同。

额定二次负载电阻

Rbn

1.2Ω

二次负载电阻

Rb

0.38Ω

二次绕组电阻

Rct

0.45Ω

准确级

10

准确限值系数

Kalf

15

实测拐点电动势

Ek

130V(变比:600/5)

260V(变比:1200/5)

不同二次绕组抽头对应的拐点电动势不同。

最大短路电流

Iscmax

10000A

一、电流互感器(以下简称CT)额定二次极限电动势校核(用于核算CT是否满足铭牌保证值)

1、计算二次极限电动势:

Es1=KalfIsn(Rct+Rbn)=15×5×(0.45+1.2)=123.75V

参数说明:

(1)Es1:CT额定二次极限电动势(稳态);

(2)Kalf:准确限制值系数;

(3)Isn:额定二次电流;

(4)Rct:二次绕组电阻,当有实测值时取实测值,无实测值时按下述方法取典型内阻值:

5A产品:1~1500A/5 A产品 0.5Ω

1500~4000A/5 A产品 1.0Ω

1A产品:1~1500A/1A产品 6Ω

1500~4000A/1 A产品 15Ω

当通过改变CT二次绕组接线方式调大CT变比时,需要重新测量CT额定二次绕组电阻。

(5)Rbn :CT额定二次负载,计算公式如下:

Rbn=Sbn/ Isn 2=30/25=1.2Ω;

——Rbn :CT额定二次负载;

——Sbn :额定二次负荷视在功率;

——Isn :额定二次电流。

当通过改变CT二次绕组接线方式调大CT变比时,需要按新的二次绕组参数,重新计算CT额定二次负载

2、校核额定二次极限电动势

有实测拐点电动势时,要求额定二次极限电动势应小于实测拐点电动势。

Es1=127.5V<Ek(实测拐点电动势)=130V

结论:CT满足其铭牌保证值要求。

二、计算最大短路电流下CT饱和裕度(用于核算在最大短路电流下CT裕度是否满足要求)

1、计算最大短路电流时的二次感应电动势:

Es=Iscmax/Kn(Rct+Rb)=10000/600×5×(0.45+0.38)=69.16V

参数说明:

(1)Kn:采用的变流比,当进行变比调整后,需用新变比进行重新校核;

(2)Iscmax:最大短路电流;

(3)Rct:二次绕组电阻;(同上)

当通过改变CT二次绕组接线方式调大CT变比时,应重新测量CT额定二次绕组电阻

(4)Rb :CT实际二次负荷电阻(此处取实测值0.38Ω),当有实测值时取实测值,无实测值时可用估算值计算,估算值的计算方法如下:

公式:Rb = Rdl+ Rzz

——Rdl:二次电缆阻抗;

——Rzz:二次装置阻抗。

二次电缆算例:

Rdl=(ρl)/s =(1.75×10-8×200)/2.5×10-6 =1.4Ω

——ρ铜=1.75×10-8Ωm;

——l:电缆长度,以200m为例;

——s:电缆芯截面积,以2.5mm2为例;

二次装置算例:

Rzz=Szz/ Izz 2=1/25=0.04Ω;

——Rzz :保护装置的额定负载值;

——Szz :保护装置交流功耗,请查阅相关保护装置说明书中的技术参数,该处以1VA为例计算;

——Izz :保护装置交流电流值,根据实际情况取1A或5A,该处以5A为例计算。

以电流回路串联n=2个装置为例,计算二次总负载:

Rb= Rdl + n×Rzz =1.4+2×0.04=1.48Ω

2、计算最大短路电流时的暂态系数

Ktd= Ek/Es=130/69.16V=1.88< 2.0(要求的暂态系数)

——Ktd :二次暂态系数,要求达到2.0以上;

——Ek :实测拐点电动势。若现场无实测拐点电动势数据,可先用二次极限电动势代替进行校核。

——Es :二次感应电动势。

当通过改变CT二次绕组接线方式调大CT变比时,需重新测量CT拐点电动势,并重新进行校核。

五、电流互感器专家系统

电流互感器专家系统的应用及意义

随着科技的迅速发展,专家系统在各个领域中得到了广泛的应用。其中,电流互感器专家系统作为一种智能化、高效的技术手段,在电力系统中扮演着重要的角色。

电流互感器专家系统是一种基于人工智能技术的计算机系统,它具有自学习、推理、决策等功能,可以模拟人类专家的知识和经验,为电力系统的监测、控制和维护提供全面的支持。

电流互感器专家系统的优势

电流互感器专家系统的优势主要体现在以下几个方面:

  • 1. 智能化:电流互感器专家系统能够通过不断学习和积累知识,提高系统的智能水平,使系统能够更好地应对各种复杂情况。
  • 2. 高效性:专家系统可以通过快速的推理和决策,准确地判断电力系统中的问题,并提供解决方案,提高系统的运行效率。
  • 3. 可靠性:专家系统可以模拟人类专家的知识和经验,通过大数据分析和处理,提高系统的可靠性和稳定性。

电流互感器专家系统的应用领域

电流互感器专家系统在电力系统中有着广泛的应用,主要包括以下几个方面:

  • 1. 故障诊断:电流互感器专家系统可以通过检测数据分析,快速准确地诊断出电力系统中的故障,并提供解决方案。
  • 2. 运行监测:系统可以实时监测电流互感器的运行情况,及时发现问题并进行处理,保证电力系统的正常运行。
  • 3. 优化控制:通过分析数据和运行情况,系统可以对电力系统进行优化控制,提高系统的性能和效率。

电流互感器专家系统的未来发展

随着电力系统的不断发展和智能化的需求增加,电流互感器专家系统在未来将会有更广阔的应用前景:

  • 1. 智能化水平提升:随着人工智能技术的不断发展,电流互感器专家系统的智能化水平将会不断提升,更好地满足电力系统的需求。
  • 2. 支持更多领域:专家系统将会不断拓展应用领域,支持更多的电力系统设备和功能,提高系统的应用范围。
  • 3. 提升系统性能:通过引入更先进的技术和算法,电流互感器专家系统将会提升系统的性能和效率,为电力系统的运行提供更好的支持。

六、电流互感器和电表的大小怎么选用?

首先说一下电表的选择。电表的选择一般是选择3×5A的三相有功电度表。

电流互感器的选择。一般是按额定电流的1.2倍来选择,比如额定电流120A,那就是120×1.2倍=144A≈150A,可选择150/5 互感器也就是30倍率的互感器。

七、电流互感器选用不准有什么后果?

其后果有:1、电流互感器的一次额定电流选择过大,流过电度表的实际电流就偏小,只要实际电路不低于电度表的 “起始” 电流值,计量精度就不受影响的。

2、电流互感器的一次额定电流选择过小,则大电流时容易造成电流互感器的铁芯磁饱和,而使计量误差增大,也容易产生较大的热量。

八、急!怎样选用电表和电流互感器?

选择电表和电流互感器需要考虑以下几个因素:

1. 电流大小:根据要监测的电流大小选择合适的电流互感器和电表。如果电流较大,需要选择电流互感器和电表的额定电流较大。

2. 电压等级:选择的电表和电流互感器的电压等级应与被测电路的电压等级匹配,以确保精度和安全。

3. 精度:根据监测要求选择适当的电表和电流互感器的精度,一般来说,精度越高,成本越高。

4. 通讯协议:如果需要远程监测,需要选择支持通讯协议的电表和电流互感器。

5. 安装环境:选择电表和电流互感器时需要考虑其安装环境,包括温度、湿度、防护等级等,以确保其长期稳定工作。

总之,选择合适的电表和电流互感器需要综合考虑以上几个因素,并根据实际情况进行选择。建议在选择前咨询专业人士。

九、8OA电流袁互感器的选用?

要分情况,我推荐两种,一种200/5,一种100/5。

如果你一次侧稳定在80A,同时为了精确度,可以选用100/5。

如果你一次侧电流并不是始终维持在80A,有偶尔超过80甚至达到100A的情况,建议选用200/5。因为此时如果选用100/5的互感器,那么可能会烧毁你的互感器。相反,选用200/5的互感器,这样精确度可能稍微次一点,但是不会烧毁你的互感器,更安全。况且,对于这种设备,一般是需要预留足够的裕度,第一确保安全,第二方便以后增加用电设备。

所以综合建议选用200/5互感器。

十、电流互感器电表接线图

电流互感器电表接线图

电流互感器电表接线图是电力系统中应用广泛的一种电气接线图,用于测量电流,并将其与电表进行连接。在电力系统中,电流互感器扮演着至关重要的角色,能够将高电流进行降压和测量,以保护设备和确保电网的安全性。正确地进行电流互感器电表接线至关重要,不仅需要保证正确和安全的测量,还需要遵循一定的标准和规范。

电流互感器的作用

电流互感器是一种专门用于测量和变换高电流的装置。它的作用是将高电流通过互感作用转换为相应的低电流,以便进行电能计量、保护和控制。在电力系统中,电流互感器通常用于变压器的二次侧或电力设备的电路中,以确保准确和安全地测量电流。

电流互感器电表接线的重要性

正确地接线电流互感器至电表是确保测量准确性和安全性的关键因素。错误的接线可能导致测量误差,甚至可能对设备和人员造成危险。以下是正确接线的重要性:

  • 准确测量:正确地将电流互感器连接至电表,可以确保准确测量到电流值。这对于评估电力系统的运行状态、计量电能以及故障检测非常关键。
  • 安全保护:电流互感器的一项重要任务是保护电力设备和电力系统,因此正确的接线可以确保在发生故障时,设备能够及时做出反应并采取必要的措施,保障人员和设备的安全。
  • 遵循标准:电力系统中有许多标准和规范,规定了电流互感器与电表之间的正确接线方式。正确遵守这些标准能够保证系统的稳定性和可靠性。

电流互感器电表接线图示例:

下面是一个示例的电流互感器电表接线图:

+-------------+ | | +----(1)-----(2)-| 电流互感器 | | | | (上游) +-------------+ (估计额定电流)

接线图说明:

在以上接线图中,(1)和(2)是电流互感器的接线端子。接线图显示了电流互感器与电表之间的连接方式。例如,在该示例中,电流互感器(1)与电表的对应端子相连。

如何正确接线电流互感器至电表

以下是一些正确接线电流互感器至电表的基本步骤:

  1. 了解电路类型:在接线之前,首先要了解电路类型,例如单相或三相系统。
  2. 选择正确的接线端子:根据电流互感器和电表的规格,选择正确的接线端子。
  3. 注意极性:在接线时,注意电流互感器和电表的极性。通常使用标有"+"和"-"符号的端子来表示极性。
  4. 遵循标准接线方式:遵循电力系统的标准和规范,正确地将电流互感器连接至电表。
  5. 进行测试:在接线完成后,进行必要的测试,确保测量结果准确,并排除任何可能的故障。

总结

电流互感器电表接线图是电力系统中确保准确测量和安全操作的关键因素。正确地接线电流互感器至电表不仅能够保证测量准确性,还能够保护电力设备和确保电力系统的安全性。在接线过程中,应遵循标准和规范,并进行必要的测试,以确保接线正确无误。