您现在的位置是:主页 > 电机 > 正文

sew电机转速和频率对应关系?

电机 2025-02-10 01:11

一、sew电机转速和频率对应关系?

1)输入电压为220-240伏时采用三角形接法; 2)输入电压为380-415伏时采用星形接法; 3)输入频率为50赫兹对应的转速为1410转/分钟; 4)S1为连续工作制,即电机在铭牌规定的额定条件下,能保证长期连续运行。

二、PLC发脉冲频率低如何提高伺服转速?

电子齿轮放大,或者采用内部控制,只需要通过PLC的IO控制开始就行,

三、伺服电机的脉冲数和脉冲频率有什么关系吗?什么是脉冲数和脉冲频率?

部分驱动器上有,不过这个在实际应用上意义不大,双脉冲的作用给我感觉就是可以实现更高的输出频率。而步进电机基本上单脉冲输出的频率就可以满足控制要求了。目前步进电机的转速,有做到1200转的,我们按照1200转/分钟的来算,一秒钟就是20转,拨5000的细分,那么要达到电机的额定转速,一秒钟就要接受100k的脉冲,刚好是市场上的单脉冲能输出的一个极限,如果细分再高些,对大多数步进电机又并没有太大的意义,所以很少见双脉冲的步进驱动器。

四、步进电机脉冲当量与速度频率关系?

相关概念

与脉冲当量相关的术语。

脉冲当量(P)

数控系统发出一个脉冲时,丝杠移动的直线距离或旋转轴转动的度数,也是数控系统所能控制的最小单位。该值越小,机床加工精度和工件表面质量越高;值越大,机床最大进给速度越大。

因此,在进给速度满足要求的情况下,建议设定较小的脉冲当量。

机床所能达到的最大进给速度与脉冲当量的关系为:

例如:朗达4S的硬件频率为1MHz,假设脉冲当量为0.001mm/p,则:

机械减速比(m/n)

减速器输入转速与输出转速的比值,也等于从动轮齿数与主动轮齿数的比值。在数控机床上为电机轴转速与丝杠转速的比值。即:

螺距(d)

丝杠上相邻两个螺纹对应点之间的轴距离。

电子齿轮比(B/A)

为伺服驱动器参数(例:安川驱动器,B为PN202,A为PN203),伺服驱动器对接收到上位机的脉冲频率进行放大或缩小。B/A的值大于1为放大,值小于1为缩小。

例如:如果上位机输入频率为100Hz,电子齿轮比分子设为1,分母设为2,那么伺服驱动器实际运行速度按照50Hz的脉冲进行。

如果上位机输入频率100Hz,电子齿轮比分子设为2,分母设为1,那么伺服驱动器实际运行速度按照200Hz的脉冲进行。

编码器分辨率(F)

伺服电机轴旋转一圈所需的脉冲数。查看伺服电机的铭牌,并对应驱动器说明书即可确定编码器分辨率。

下图为安川SGMSH型号电机的铭牌。其中电机型号中第四位是序列编码器规格,该电机分辨率为217,即131072。

例如:某型号机床(配安川驱动器)的丝杠螺距为5毫米,编码器分辨率为17bit,脉冲当量为0.0001mm/p,机械减速比1:1,则:

设定方法

脉冲当量的设定值决定机床的最大进给速度。在进给速度满足要求的情况下,可以设定较小的脉冲当量。

设置脉冲当量后,根据脉冲当量公式计算电子齿轮比或细分数,再设置到驱动器中。

对于不同的电机系统,脉冲当量计算方法不同。

一般来说,对于模具机用户可考虑脉冲当量为0.001mm/p(此时最大进给速度为9600mm/min)或者0.0005mm/p(此时最大进给速度为4800mm/min)。

对于精度要求不高的用户,脉冲当量可设置的大一些,如0.002mm/p(此时最大进给速度为19200mm/min)或0.005mm/p(此时最大进给速度为48000mm/min)。

判断脉冲当量是否正确:

用刀尖在当前位置扎一个点后,对应进给轴走100mm;

再扎一个点,测量两点间距离。

若两点间距离为100mm,则脉冲当量设置无误。

伺服电机

一般情况下,设定脉冲当量(p)为默认值0.001mm/p,再计算电子齿轮比(B/A)。

伺服电机的脉冲当量根据轴类型的不同,可分为:

直线轴

电子齿轮比与脉冲当量的关系为:

旋转轴

旋转轴脉冲当量是每个脉冲对应装夹工件的轴转动的度数。其与直线轴的区别在于:旋转轴的螺距值为360度。因此,计算伺服电机旋转轴脉冲当量时,只需将螺距值换成360,其他计算方法相同。

故伺服电机旋转轴脉冲当量的计算方法为:

步进电机

一般情况下,先设定细分数,再计算脉冲当量。也可先设定脉冲当量,再计算细分数。

步进电机的脉冲当量根据轴类型的不同,可分为:

直线轴

脉冲当量和细分数之间的关系为:

例如:某型号机床的X轴选用的丝杠导程为5毫米,步进电机的步距角为1.8度,工作在10细分模式。电机和丝杠采用连轴节直连。那么,X轴的脉冲当量为:

旋转轴

旋转轴脉冲当量是每个脉冲对应装夹工件的轴转动的度数。其与直线轴的区别在于:旋转轴的螺距值为360度。因此,计算步进电机旋转轴脉冲当量时,只需将螺距值换成360,其他计算方法相同。

五、步进电机脉冲频率与输出转速的换算?

步进电机在整步是,1圈需要200个脉冲,即200Hz时,电机速度1rps,8000Hz时,转速40rps;

半步时,1圈需要400个脉冲,即400Hz时,电机转速1rps,8000Hz时,转速20rps;

4细分时,1圈需要800个脉冲,即800Hz时,电机转速1rps,8000Hz时,转速10rps;

由上可知,电机运行速度=控制脉冲频率/(200*细分值)rps

六、电压频率和转速关系?

频率是交流电的一个参数,原则上讲与电压没有关系,在感性负载和容性电路中会影响总阻抗、无功功率和功率因数等。

例如交流电路中电感上的电压与频率成正比,电容上的电压与频率成反比,在电感、电容的串并联回路中还会出现峰值和谷值,即所谓的“谐振”。

频率影响旋转电机的转速,间接地,也会影响它的出力。周波本身是由发电机的转速决定的。频率的变化取决于系统中有功的实时平衡状态,发电机发出的有功大于负荷消耗的有功时,发电机会加速,频率会增高,反之则减速、降低。

七、电机转速和频率公式?

电机转速与频率的公式

n=60f/p

上式中

n——电机的转速(转/分);

60——每分钟(秒);

f——电源频率(赫芝);

p——电机旋转磁场的极对数.

我国规定标准电源频率为f=50周/秒,所以旋转磁场的转速的大小只与磁极对数有关.磁极对数多,旋转磁场的转速成就低.

极对数P=1时,旋转磁场的转速n=3000;

极对数P=2时,旋转磁场的转速n=1500;

极对数P=3时,旋转磁场的转速n=1000;

极对数P=4时,旋转磁场的转速n=750;

极对数P=5时,旋转磁场的转速n=600

(实际上,由于转差率的存在,电机.实际转速略低于旋转磁场的转速)

在变频调速系统中,根据公式n=60f/p可知:

改变频率f就可改变转速

降低频率↓f,转速就变小:即 60 f↓ / p = n↓

增加频率↑f,转速就加大:即 60 f↑ / p = n↑

八、三菱PLC控制伺服电机脉冲频率和脉冲数量如何计算?

假如驱动器电子齿轮比是 1:1,再假如编码器是2500X4=10000个脉冲/圈;于是再假如你要马达转一圈,则应该发10000个脉冲;转两圈就发20000个脉冲;还假如你要马达10秒转一圈,则频率应该是1000个脉冲/秒

九、串激电机的转速和频率有关系吗?

N=(60F/P)*(1-S%)

N=电动机同步转速

F=电源的频率

P=磁极对数

S=转差率

所以电动机的转速和电源的频率,电动机的磁极对数,转差率有关系.

说的多一点在正常的情况下是和这些参数有关系的,但是在运行的情况下可能和电动机的负载的大小也有关系.在运行中的这些参数是不固定的.

与电流的方向没关系,和磁场的方向也没关系.

因为电流的方向决定了磁场的方向,磁场的方向决定了电动机的方向.

这些和转速都没关系的,只是和电动机的电磁功率,旋转方向等有关系而已.

一般来讲,转速只与极数和频率有关.与转动方向,电压,电流,及磁场的大小无关.转速的公式N=(60f/P)*(1-s)就可以看出来.现在的问题是有时候电压,电流,磁场等因数改变的情况下,转速也会有些"小"的变化.这个原因就是公式里的"s",转差率.一般来讲,电压高,电流就会大,电流大,磁场就会强,而磁场强,转速会高点.但这不是绝对的.

十、频率与电机转速的关系是什么?

电机频率与转速的关系可以用公式n = 60 f / p表示。

n—电机转速(转/分)

60—每分钟(秒)

f—电源频率(赫兹)

P—电机旋转磁场的极对数

电机转速的决定因素:

对于同步电动机或异步电动机来说,电动机的转速与电源的频率,电动机磁极对数有关,电源频率越高、磁极对数越少,其转速就越高;对于异步电动机还与通过电动线圈的电流有关,电流越大,其转速就越接近同步转速。还有一类电动机(通常就是交直流电动机),其转速与电源的频率是无关的。只与通过线圈的电流大小有关。

一般电机的转速:

2级电机 3000转

4级电机 1500转

6级电机 1000转

8级电机 750转

10级电机 600转

16级电机 500转