铝离子电池的负极材料?
一、铝离子电池的负极材料?
铝离子电池是用石墨作为正极材料,并用一种相当于盐溶液的离子液体作为电解液的电池,容量高也很安全。
中文名
铝离子电池
材 料
铝
研发过程
铝成本低,可燃性低,且具有高电荷存储能力,因此一直是用作电池颇具吸引力的材料。在过去几十年,研究人员致力于研发商业可行的铝离子电池,却一直以失败告终,可充电铝电池始终处于概念阶段。其中面临的一个重要挑战便是找到在经历了反复充电和放电后仍能够产生足够电压的材料。
二、铝基负极电池发展前景?
发展前景非常好!
一种新型铝基复合负极材料的锂电池,是我国首款具有宽温域、低成本、长寿命的电芯产品,有望打破电池产业格局。该产品的高低温性能、循环寿命、安全性能等各项指标,均已通过第三方权威机构检测。
低成本宽温域
长续航快充性能不俗
根据此前深圳先进技术研究院的介绍,该铝基复合负极材料是基于铝箔负极——以铝箔同时作为负极材料和负极集流体,具有全新的全电池反应机理:充电时,锂离子从正极材料中脱嵌出来,运动到铝箔负极表面,并与铝形成铝锂合金;放电时,锂离子从铝锂合金中脱出,又嵌入到正极材料中。
三、加电池补充液后电池负极发热?
铅酸类新电瓶加液后,极板与溶液发生化学反应,发热是很正常的,今后电瓶在充电或大功率放电过程中也会发热,属于正常现象。
电瓶加液后,极板与溶液发生化学反应,发热是很正常的,今后电瓶在充电或大功率放电过程中也会发热,属于正常现象。
蓄电池放电发热是有可能电池容量小造成的,放电电流长时间超过0.5C.在这里强调的是:短途行驶后,电池虽然消耗一定电量,但是静止后,蓄电池有一个恢复过程,极板的电化学过程仍持续进行,极板的电化作用与电能消耗同时进行.当电机额定电压值低,蓄电池容量小,工作电流过大,电压会急剧降低,容量也迅速耗尽,有利于维护电池.电化学的反应速度只能维持行车,电池没有恢复的机会,常使蓄电池整循环充放电,稍不注意就会消耗过大.较为理想的电化学反应速度是可以提供足够的电能,电池外壳没有异常的热度,表明电池容量富余.因此,电池发热就要留意电池容量是否不足了.
四、为什么铝和铜形成原电池,铝不做负极?
铜和铝接在一起,在潮湿条件下,根据原电池原理,形成生电化反应,产生电腐蚀,接触电阻变大,发热烧毁。所以要铜涮锡或使用铜-铝过渡接头。改变反应条件,让铜变成较活泼的金属,铝变成惰性金属。
比如在浓硝酸中,铜能够和浓硝酸反应,而铝会钝化,这时候铝就是正极,铜作为负极。
正极:2NO3- + 4H+ + 2e- = 2NO2↑ + 2H2O
负极:Cu-2e-=Cu2+
五、铝空气电池正负极之间的距离?
铝空气电池的铝板为负极,有催化剂和空气隔水层为电池正极,他们之间隔着电解液,只要正负极既不短路而且不影响电解液的流动这个距离就是最好的。
距离大了会造成电池内阻增大。’六、铝负极优缺点?
在续航性能上,得益于铝基复合负极材料较高的理论容量,该电池能量密度较传统锂离子电池提升了13%—25%,能做到长续航。此外,由于铝基复合负极材料优异的导电性能,产品还表现出不俗的快充性能,20分钟即可充满电。
在成本方面,基于铝基复合负极材料的性能优势,并结合研究团队开发的高性能电解液,低温电池产品可以摆脱对昂贵的纳米级正极材料的依赖。因为现在的低温电池正极需要纳米级的材料,成本比较高。而研究团队研制的铝基复合负极材料,让正极材料不必必须是纳米级的材料,在降低材料成本方面,电池成本可以降低10%—30%。
七、电池负极材料市场前景
电池负极材料市场前景
电池作为现代社会中不可或缺的能源媒介,其关键组成部分之一就是负极材料。负极材料的选取将直接影响到电池的性能和稳定性,因此,对于电池负极材料市场前景的研究和分析显得至关重要。
当前市场现状
目前,电池负极材料市场呈现出快速发展的态势。随着新能源汽车、智能手机等电子产品的不断普及,对电池的需求量大幅增加。作为电池中负极的重要组成部分,负极材料的市场需求也随之增长。同时,随着科技的不断进步,新型的负极材料不断涌现,为市场注入了更多的活力和可能性。
未来趋势
展望未来,电池负极材料市场将在多个方面出现新的发展趋势。首先,随着对能源存储技术要求的不断提高,市场对高性能、高能量密度的负极材料的需求将逐渐增加。其次,环保和可持续发展意识的提升将推动市场对绿色环保型负极材料的需求增加。再者,在智能化、物联网等新兴领域的崛起下,对于具有快速充放电能力的负极材料的需求也将逐渐增加。
市场竞争格局
在电池负极材料市场中,竞争格局愈发激烈。各大厂家纷纷加大研发投入,推出更具竞争力的新产品。同时,新兴企业也积极涉足其中,加剧了市场的竞争压力。在这种背景下,厂家们除了不断提升产品性能和品质外,还需要加大市场营销和渠道拓展力度,以确保自身在市场中的地位。
技术创新
技术创新是电池负极材料市场发展的关键。随着纳米技术、材料科学等领域的不断突破,新型负极材料的研发进展迅速。从传统的石墨材料,到硅基、硫基等高性能材料的涌现,技术创新为市场带来了更多的可能性。未来,随着研发技术的不断深入和完善,电池负极材料市场将迎来更多的创新突破。
市场前景展望
综合来看,电池负极材料市场前景广阔,但也充满挑战。在市场竞争激烈的环境下,厂家们需要不断提升自身实力,抓住技术发展的机遇,加大创新力度,以应对市场的变化。同时,政府对于新能源产业的支持力度也将为电池负极材料市场的发展提供更多机遇和空间。未来,随着技术的不断进步和市场需求的不断增长,电池负极材料市场必将迎来更加广阔的发展前景。
八、如何判断蓄电池正负极。?
当旧蓄电池的极性标记不清时,通常可以采用下述诸法进行判别: 1. 看极柱本身的颜色:极柱表面呈黑色的为正极柱,浅灰色的为负极柱。 2. 看铭牌标记:面对蓄电池外壳上的铭牌标记,位于铭牌标记右上方的极柱为正极柱。 3. 比较法:用高率放电计与有明显极性标记的蓄电池进行比较检验,按表针偏转方向判定。 4. 测量法:将直流电压表的“+”“-”两接线柱分别接至蓄电池的两极柱上,若指针转向正极,则接“+”的极柱为蓄电池的正极,接“-”的极柱为蓄电池的负极。如表针反转,应将极柱反接重测。 5. 看极柱的粗细:如果蓄电池的正、负极柱为圆柱形,则粗一点的为正极柱,较细的为负极柱。 6. 看化学反应:将接蓄电池极柱的两根导线分别浸在稀硫酸液中,这时在两个线头周围都有气泡产生,产生气泡较多的为负极柱。
九、全电池正负极如何容量匹配?
电池设计时,如果负极没有接受锂离子的位置,锂离子会在负极表面析出,形成锂枝晶,刺穿隔膜,造成电池内短路,引发热失控。因此,在锂电池设计时,负极往往需要过量设计以避免此类情况出现,具体包括两个方面:(1)N/P设计,即单位面积内负极容量与正极容量的比值,NP比一般为1.03-1.5之间,保证负极具备一定的过量以避免锂枝晶析出,NP比具体数值按照不用材料体系的设计考虑。(2)Overhang设计,Overhang是指负极极片长度和宽度方向多出正负极极片之外的部分。例如图1(b)所示,一般地负极极片尺寸要比正极大一些。卷绕结构的电池也一样,负极在长度和宽度方向都要有面积余量,如图1(f)。
图1. (a-e)具有不同正极/负极面积比的五种纽扣电池示意图和(f)卷绕电池负极面积余量设计
负极的Overhang设计从析锂安全性方面考虑,余量面积越大越好。但是,余量面积设计越大,电池能量密度越低,而且对电池性能也会有影响。为了研究负极余量面积对性能的影响,研究者设计了如图1(a-e)所示5种纽扣电池,例如C12A12表示正极圆片直径12mm,负极圆片12mm,其它标号含义类似。具体的正负极极片面积以及面积比如表1所示。具体的电池正负极材料和极片参数如表2所示,正极采用钴酸锂LCO,负极采用人造石墨。负极/正极面容量比(N/P)为1.13。
电池组装后静置12 小时,然后以 0.1C的恒定电流 (CC) 在 3.0 和 4.2 V 之间化成循环1次,然后再在 0.2C电流密度下在 3.0 和 4.2 V 之间循环3 次。化成和3次稳定电池的循环充电容量(CHG)、放电容量(DIS)、库伦效率(Coul.eff.)列入表3中。随着负极面积从 1.13 逐渐增加到 2.54 cm 2 ,首先由于负极上SEI形成反应的增加,初始库仑效率从大约 90% 大幅下降到 79% 。虽然随着负极面积的增大,充电容量也增加了大约 2%(从 1.945 到 1.987 mAh)(见表 3),但放电容量从 1.759(C12A12)到 1.571 mAh ,减少了大约 11%( C12A18),这意味着在充电过程中一些锂离子被不可逆地消耗形成SEI,而不是嵌入到石墨负极中。具有较大负极的纽扣电池显示在充电过程的出增加的分解反应和放电容量下降。
对于正极面积比负极大的C16A12,尽管化成步骤中的充电容量似乎达到了理论值,但放电容量大大降低,库仑效率非常低,约为 63%。在随后3次循环期间,放电容量显示出更大的连续下降,而库仑效率相对较低。这种不同的现象与负极边缘表面不可逆的锂枝晶形成密切相关。
图2. 四种不同正极/负极面积比的电池化成首圈充放电曲线对比
通过倍率性能和循环测试研究了正极/负极面积比对电化学性能的影响。不同倍率的电压曲线如图3所示。正极面积不变,随着负极面积的增加,以1C放电容量为依据,倍率放电容量保持率下降。
图3. 四种不同正极/负极面积比的电池倍率性能对比
电池的1C/1C 循环结果如图4所示,除了相反的情况(电池 C16A12),其他四种情况在 100 次循环中表现出稳定的容量保持,具有较大负极面积的电池容量略低。然而,C12A12 电池在第 30 个循环左右开始显示出稍微更快的容量衰减。这可能与负极容量不足,不可逆的 SEI 形成和连续电解质分解有关。
图4. 5种不同正极/负极面积比的电池循环性能对比
图5是对Overhang影响的解释,充满电、满电保持一周和放电状态时,负极Overhang区域颜色变化过程。充电过程中,正极脱出的锂离子垂直于极片运动到负极并嵌入,石墨变成金黄色,而对于Overhang区域没有锂离子嵌入,颜色保持黑色。但是在满电状态下,电池保持一定的时间,极片中还存在锂离子的横向扩散重新分布过程,由于锂浓度梯度引起锂从扩散到Overhang区域,其颜色发生变化。
图5. 负极Overhang区域颜色变化过程:(a)充电到4.15V;(b)4.15V,60℃下保存一周;(c)然后放电到3.0V
锂的横向扩散过程机理如图6所示。在充电时正极的锂垂直扩散到负极对应区域,负极边缘没有锂浓度,SOC保持为0;充电结束的静置阶段,中心区域的锂在浓度梯度作用下扩散到边缘区域,Overhang区形成一定锂浓度梯度,Overhang区附近的锂浓度略有下降;放电时,负极中心区域的锂返回正极,而Overhang区的锂也会返回正极边缘。正极边缘的锂浓度更高些;放电结束静置阶段,正极锂横向扩散平衡浓度;下一次充电时由于正极边缘锂浓度更高,导致负极Overhang区附近的锂浓度也会更高,从而产生析锂。
图6. 充放电过程中正负极及OVERHANG区域的SOC变化过程
在设计与制造锂离子电池时,一方面需要考虑负极有接受锂离子的区域,一般负极尺寸要大于正极;另一方面,负极余量面积在锂的横向扩散中也会导致SEI形成消耗更多活性锂,以及负极边缘析锂,应采取措施确保正极和负极尺寸完全相同并且彼此完全重叠,或者至少应使负极Overhang区尽可能小。
参考文献[1] Son B , Ryou M H , Choi J , et al. Effect of cathode/anode area ratio on electrochemical performance of lithium-ion batteries[J]. Journal of Power Sources, 2013, 243(dec.1):641-647.[2] Grimsmann F , Gerbert T , Brauchle F , et al. Hysteresis and current dependence of the graphite anode color in a lithium-ion cell and analysis of lithium plating at the cell edge[J]. Journal of Energy Storage, 2018, 15(feb.):17-22.[3] Hufner T , Oldenburger M , Beduerftig B , et al. Lithium flow between active area and overhang of graphite anodes as a function of temperature and overhang geometry[J]. Journal of Energy Storage, 2019, 24(AUG.):100790.1-100790.6.
十、电池负极材料?
从物理角度来看,是电路中电子流出的一极。而负极材料,则是指电池中构成负极的原料,目前常见的负极材料有碳负极材料、锡基负极材料、含锂过渡金属氮化物负极材料、合金类负极材料和纳米级负极材料。负极指电源中电位(电势)较低的一端。在原电池中,是指起氧化作用的电极,电池反应中写在左边。