碱性燃料电池电极反应?
一、碱性燃料电池电极反应?
①碱性燃料电池电极反应:
正极:O2 + 2H2O + 4e- → 4OH-
负极:2H2 - 4e- + 4OH- → 4H2O
总反应式:2H2 + O2 == 2H2O
②酸性燃料电池
正极:O2 + 4H+ + 4e- → 2H2O
负极:2H2 - 4e-→ 4H+
总反应式:2H2 + O2 == 2H2O
二、碱性燃料电池的原理?
碱性燃料电池原理是使用的电解质为水溶液或稳定的氢氧化钾基质,且电化学反应也与羟基(-OH)从阴极移动到阳极与氢反应生成水和电子略有不同。这些电子是用来为外部电路提供能量,然后才回到阴极与氧和水反应生成更多的羟基离子。
三、碱性燃料电池的发展历程?
碱性燃料电池(alkaline fuel cell,AFC)是第一个燃料电池技术的发展,最初由美国航空航天局的太空计划,同时生产电力和水的航天器上。AFCS继续使用NASA航天飞机上的整个程序中,除了数量有限的商业应用。
简介
电动车辆和规模化储能等新能源产业的发展,以及高性能便携式电子设备的进步,迫切需要高效、清洁的电化学储能系统。目前广泛使用的锂离子电池的能量密度已接近理论极限,无法满足对储能系统的迫切要求。因此,全世界都在积极探索下一代的电化学储能系统。
燃料电池(fuel cells,FC)是一种可以将储存在燃料和氧气中的化学能直接转化为电能的电化学储能装置。普通的内燃机由于需要经历热机过程,受卡诺循环的限制,其能量转化率大多低于 15%,燃料电池不受此限制,因而具有很高的能量转化率,一般为 40%~60%,如果将余热充分利用,甚至可以高达 90%。此外,燃料电池在工作时,其反应产物一般只有 H2O 和CO2,很少会排放出 NOx和 SOx,
因而不会污染环境,是新一代的绿色能源。燃料电池在工作时排出的二氧化碳量,也低于传统火力发电厂的 60%。可见,燃料电池对解决目前全世界所面临的能源安全(Energy Security)和环境保护(Environment Protection)两大难题都具有极其重要的意义。同时,燃料电池由于具有高效、绿色、安全等优点,被认为是 21 世纪的新能源之星。
目前,国内外学者对已研究开发出来的燃料电池,按照电解质的种类进行分类,主要分为 5 种:碱性燃料电池(AFC),一般用 6~8 mol·L-1的 KOH 溶液作为电解质;磷酸型燃料电池(PAFC),大多以质量分数为 98wt%左右的浓 H3PO4溶液为电解质;熔融碳酸盐燃料电池(MCFC),大多将 Li2CO3和 K2CO3按一定比例混合后作为电解质;质子交换膜燃料电池(PEMFC),通常采用美国 Du Pont 公司生产的 Nafion 膜作为电解质;固体氧化物燃料电池(SOFC),采用 YSZ(Y2O3掺杂稳定的 Zr O2)等作为氧离子导体。
在众多类型的燃料电池中,碱性燃料电池(AFC)技术是最成熟的。从 20 世纪60 年代到 80 年代,国内外学者深入广泛地研究并开发了碱性燃料电池。但是在80 年代以后,由于新的燃料电池技术的出现,例如 PEMFC 使用了更为便捷的固态电解质而且可以有效防止电解液的泄漏,AFC 逐渐褪去了其原有的光彩。但是,通过 PEMFC 和 AFC 之间的对比,不难发现理论上 AFC 的性能要优于 PEMFC,甚至早期的 AFC 系统都可以输出比现有 PEMFC 系统更高的电流密度。成本分析表明:AFC 系统用于混合动力电动车与 PEMFC 相比要更有优势。与 PEMFC 相比,AFC 在阴极动力学和降低欧姆极化方面具有很多优势;碱性体系中的氧还原反应(ORR)动力学比酸性体系中使用 Pt 催化剂的 H2SO4体系和使用 Ag催化剂的HCl O4体系都要更高。同时,碱性体系的弱腐蚀性也确保了 AFC 能够长期工作。AFC 中更快的 ORR 动力学使得非贵金属以及低价金属例如 Ag 和 N i 作为催化剂成为可能,这也使得 AFC 与使用 Pt 催化剂为主的 PEMFC 相比更有竞争力。因此,近年来对碱性燃料电池研究的复苏逐渐凸显出来。
简介
电动车辆和规模化储能等新能源产业的发展,以及高性能便携式电子设备的进步,迫切需要高效、清洁的电化学储能系统。目前广泛使用的锂离子电池的能量密度已接近理论极限,无法满足对储能系统的迫切要求。因此,全世界都在积极探索下一代的电化学储能系统。
燃料电池(fuel cells,FC)是一种可以将储存在燃料和氧气中的化学能直接转化为电能的电化学储能装置。普通的内燃机由于需要经历热机过程,受卡诺循环的限制,其能量转化率大多低于 15%,燃料电池不受此限制,因而具有很高的能量转化率,一般为 40%~60%,如果将余热充分利用,甚至可以高达 90%。此外,燃料电池在工作时,其反应产物一般只有 H2O 和CO2,很少会排放出 NOx和 SOx,
因而不会污染环境,是新一代的绿色能源。燃料电池在工作时排出的二氧化碳量,也低于传统火力发电厂的 60%。可见,燃料电池对解决目前全世界所面临的能源安全(Energy Security)和环境保护(Environment Protection)两大难题都具有极其重要的意义。同时,燃料电池由于具有高效、绿色、安全等优点,被认为是 21 世纪的新能源之星。
目前,国内外学者对已研究开发出来的燃料电池,按照电解质的种类进行分类,主要分为 5 种:碱性燃料电池(AFC),一般用 6~8 mol·L-1的 KOH 溶液作为电解质;磷酸型燃料电池(PAFC),大多以质量分数为 98wt%左右的浓 H3PO4溶液为电解质;熔融碳酸盐燃料电池(MCFC),大多将 Li2CO3和 K2CO3按一定比例混合后作为电解质;质子交换膜燃料电池(PEMFC),通常采用美国 Du Pont 公司生产的 Nafion 膜作为电解质;固体氧化物燃料电池(SOFC),采用 YSZ(Y2O3掺杂稳定的 Zr O2)等作为氧离子导体。
在众多类型的燃料电池中,碱性燃料电池(AFC)技术是最成熟的。从 20 世纪60 年代到 80 年代,国内外学者深入广泛地研究并开发了碱性燃料电池。但是在80 年代以后,由于新的燃料电池技术的出现,例如 PEMFC 使用了更为便捷的固态电解质而且可以有效防止电解液的泄漏,AFC 逐渐褪去了其原有的光彩。但是,通过 PEMFC 和 AFC 之间的对比,不难发现理论上 AFC 的性能要优于 PEMFC,甚至早期的 AFC 系统都可以输出比现有 PEMFC 系统更高的电流密度。成本分析表明:AFC 系统用于混合动力电动车与 PEMFC 相比要更有优势。与 PEMFC 相比,AFC 在阴极动力学和降低欧姆极化方面具有很多优势;碱性体系中的氧还原反应(ORR)动力学比酸性体系中使用 Pt 催化剂的 H2SO4体系和使用 Ag催化剂的HCl O4体系都要更高。同时,碱性体系的弱腐蚀性也确保了 AFC 能够长期工作。AFC 中更快的 ORR 动力学使得非贵金属以及低价金属例如 Ag 和 N i 作为催化剂成为可能,这也使得 AFC 与使用 Pt 催化剂为主的 PEMFC 相比更有竞争力。因此,近年来对碱性燃料电池研究的复苏逐渐凸显出来。
AFC 阳极电催化剂的研究进展
电催化剂是燃料电池的关键组成部分,其性能高低直接决定了燃料电池的工作性能。燃料电池对电催化剂的基本要求为:(1)对电化学反应具有很高的催化活性,能够加速电化学反应的进行;(2)对反应的催化作用具有选择性,即只对反应物转化为目标产物的反应具有催化作用,对其他副反应并无催化作用;(3)具有良好的电子导电性,有利于电化学反应过程中电荷的快速转移,从而降低电池内阻;(4)具有优良的电化学稳定性,从而保证其使用寿命。目前国内外学者已将很多材料用于碱性燃料电池阳极电催化剂,主要包括Pt基、Pd基、Au基及非贵金属催化剂等。
AFC 阴极电催化剂的研究进展
碱性燃料电池阴极主要为氧还原反应(ORR),由于反应中牵涉到 4 个电子的转移步骤,还有 O-O 键的断裂,易出现中间价态粒子,如 HO2-和中间价态含氧物种等问题,因此 AFC 中阴极的氧还原反应是一个很复杂的过程。目前关于 ORR的真实反应途径尚不清楚,研究人员普遍认为主要有以下两种途径:
(i) 直接四电子途径:O2+ 2H2O + 4 e-→ 4OH-
(ii) 二电子途径: O2+ H2O + 2e-→ HO2-+OH-
HO2- + H2O+ 2e-+→ 3OH-
从动力学理论上说,碱性体系中的氧还原反应(ORR)速率要比酸性体系中更快一些。正是由于碱性体系中ORR速率较酸性体系更快,使得大量的材料得以用作AFC阴极催化剂,主要包括Pt基、Pd基、Ag基及非贵金属催化剂等。
催化剂的性能衰减机制
目前关于碱性体系中催化剂的性能衰减机制尚无相关研究,但是在PEMFC中关于Pt催化剂性能衰减机制方面,国内外学者已经进行了大量研究工作,目前研究人员普遍认为,在PEMFC的工作环境下,Pt催化剂性能衰减的主要原因有:碳载体被腐蚀,导致Pt从载体上脱落;Pt颗粒的溶解-再沉积;Pt颗粒在碳载体表面的团聚。
四、碱性燃料电池的存放期?
一般说普通碱性电池的保质期为三年。
五、阿波罗碱性燃料电池优点?
①碱性燃料电池可以在一个宽温度(80~230℃)和压力[(2.2-45)×105Pa]范围内运行。因其可以在较低的温度(大约80℃)下运行,故它的启动也很快,但其电力密度却比质子交换膜燃料电池的密度低十几倍。
②AFC具有较高的效率(50%~55%)。因由氢氧电解液所提供的快速动力学效应,故碱性燃料电池可获得很高的效率。尤其是氧的反应(O2-》OH-)比酸性燃料电池中氧的还原反应容易得多,因此,活性损耗非常低。
③性能可靠,可用非贵金属作催化剂,是燃料电池中生产成本最低的一种电池。碱性燃料电池中的快速动力学效应使银或镍可用以替代铂作为催化剂。其电池本体可以用价格低的耐碱塑料制作,且使用的是廉价的电解液。这样,碱性燃料电池堆的成本显著下降。
④通过电解液完全的循环,电解液被用作冷却介质,易于热管理;更为均匀的电解液的集聚,解决了阴极周围电解液浓度分布问题;提供了利用电解液进行水管理的可能性;若电解液已被二氧化碳过度污染,则有替换电解液的可能性。当电解液循环时,燃料电池被称为“动态电解液的燃料电池”,这种循环使碱性燃料电池动力学特性得到了进一步的改善。
六、甲烷碱性燃料电池方程式?
负极:CH₄+10OH⁻+8e⁻=CO₃²⁻+7H₂O; 正极:2O₂+4H₂O +8e⁻=8OH⁻。 甲烷(CH₄)燃料电池就是用沼气(主要成分为CH₄)作为燃料的电池,与氧化剂O₂反应生成CO₂和H₂O反应中得失电子就可产生电流从而发电。效率高、污染低,是一种很有前途的能源利用方式。
七、碱性燃料电池电极反应式?
①碱性燃料电池反应方程式:
正极:O2 + 2H2O + 4e- → 4OH-
负极:2H2 - 4e- + 4OH- → 4H2O
总反应式:2H2 + O2 == 2H2O
②酸性燃料电池反应方程式:
正极:O2 + 4H+ + 4e- → 2H2O
负极:2H2 - 4e-→ 4H+
总反应式:2H2 + O2 == 2H2O
八、为什么碱性燃料电池生成碳酸根?
含有碳元素的燃料,比如烃类、一氧化碳、甲醇等,完全燃烧后的产物应该是正四价的碳的化合物,至于是碳酸根还是二氧化碳,得看电池内部电解质溶液的酸碱性,如果是酸性或者中性电解质溶液,则这类电池工作后的产物是二氧化碳,如果是碱性电解液,则为碳酸根离子。
觉得
九、乙醇氧气碱性燃料电池方程式?
①乙醇燃料电池,酸作电解质
正:O2 + 4H+ + 4e = 2H2O
负:C2H6O + 3H2O - 12e = 2CO2 + 12H+
②乙醇燃料电池,KOH作电解质
负极:
C2H5OH+16OH--12e=2CO32-+11H2O
正极:O2+4e(-)+2H2O=4OH(-)
总反应:
C2H5OH+3O2+4KOH=2K2CO3+5H2O
十、乙醇氧气碱性燃料电池负极反应式?
乙醇燃料电池,KOH作电解质
总反应:C2H5OH+3O2+4KOH=2K2CO3+5H2O
负极:C2H5OH+16OH(-)-12e(-)=2CO3(2-)+11H2O
正极:O2+4e(-)+2H2O=4OH(-)