电压源电流源电阻串联,这个电流源的功率是多少啊?
一、电压源电流源电阻串联,这个电流源的功率是多少啊?
电流源使回路电流为5A,5A电流在电阻上产生的压降为2×5=10V,回路总电压为电源电压10V和电阻压降10V相加,为20V,因此电流源的功率=U×I=20×5=50W
二、电流源电压源符号?
电流源的内阻相对负载阻抗很大,负载阻抗波动不会改变电流大小。在电流源回路中串联电阻无意义,因为它不会改变负载的电流,也不会改变负载上的电压。
电流源的符号是
电压源,即理想电压源,是从实际电源抽象出来的一种模型,在其两端总能保持一定的电压而不论流过的电流为多少。电压源具有两个基本的性质:第一,它的端电压定值U或是一定的时间函数U(t)与流过的电流无关。第二,电压源自身电压是确定的,而流过它的电流是任意的。
电压源的符号是:
三、电流源和电压源?
一个电源可以用两种不同的电路模型来表示,一种是用电压的形式来表示,称为电压源,一种是用电流的形式来表示称为电流源。
1.电压源电源电压U恒等于电动势E,是一定值,而其中的电流I是任意的,由负载电阻RL及电源电压U本身确定,这样的电源称为理想电压源或者是恒压源。
2.电流源电源电流I恒等于电流Is是一定值,而其两端的电压U则是任意的,由负载电阻RL以及电流Is本身确定。这样的电源称为理想电流源或者是恒流源。
四、含电压源电流源的支路?
任一支路上电流只有一个,所以中间支路上的电流等如电流源值1A向上。
五、电压源和电流源的区?
流过电流不同
电流源输出的是稳定的电流,流过电压源的电流是任意的。
2、内阻不同
理想电流源的内阻无穷大,电压源的内阻很小,理想电压源内阻为0。
3、两端电压不同
电流源两端的电压是任意的;电压源两端的电压是恒定不变的。
电流源的内阻相对负载阻抗很大,负载阻抗波动不会改变电流大小。在电流源回路中串联电阻无意义,因为它不会改变负载的电流,也不会改变负载上的电压。在原理图上这类电阻应简化掉。负载阻抗只有并联在电流源上才有意义,与内阻是分流关系。
电压源,即理想电压源,是从实际电源抽象出来的一种模型,在其两端总能保持一定的电压而不论流过的电流为多少。电压源具有两个基本的性质:第一,它的端电压定值U或是一定的时间函数U(t)与流过的电流无关。第二,电压源自身电压是确定的,而流过它的电流是任意的。
扩展资料:
电流源分类:
1、可调电流源
直流电流源(主要参数有输出 电流,额定输出工率,等等),输出电流可调的称为可调电流源。
2、脉冲电流源
脉冲电流镜电路采用高速场效应管实现对恒流源电流的复制和倍乘,降低脉冲电流源输出负载对前级深度负反馈部分的影响,提高电路的稳定性,并利用模拟多路复用器对电流镜栅极的控制,将脉冲信号传递到脉冲电流中,从而输出脉冲电流。
仿真实验表明,提出的脉冲电流源运行稳定可靠,输出的脉冲电流的幅值、重复频率和脉冲宽度均可数控调节,电流幅值稳定,脉冲前沿陡峭,可满足不同的激光器驱动和测试需求。
3、高精度电流源
提出了一种高精度的电流源电路,通过V/I变换,将由带隙基准电 压电路产生的与温度和电源电压无关的带隙基准电压转换成与温度和电压无关的高精度基准电流,并通过高精度电流镜结构产生所需的镜像电流,有效地抑制了由于 温度、电源电压、负载阻抗的变化及干扰对电流源的影响。
六、电流源与电压源的符号?
电压源符号里面是竖线,电流源是横线。
其中电压源的内阻相对负载阻抗很小,负载阻抗波动不会改变电压高低。在电压源回路中串联电阻才有意义,并联在电压源的电阻因为它不能改变负载的电流,也不能改变负载上的电压,这个电阻在原理图上是多余的,应删去。负载阻抗只有串联在电压源回路中才有意义,与内阻是分压关系。
七、电压源和电流源的概念?
电压源就是普通的电源,具有极低的内阻。而负载的阻值在大范围变化时肯定都远大于电源内阻,因此电压源的端电压稳定,可以看作全部电动势都降在了负载上。
电流源在电子电路中常见(在电力工程中,电流互感器的二次端可看作电流源)。具有极高的内阻,起到了限流的作用,通常负载电阻值都远小于其内阻,因此输出电流恒定(由电流源内阻决定了最大电流)。
八、电流源串联电压源电流怎么变化?
电压源与电流源串联,将电压源置0并短路,只留下电流源。电源简化是对负载而言,不改变负载上电压与电流。
电压源与电流源并联,将电流源置0且开路,只留下电压源。电源简化同样是对负载而言,不影响负载上电压与电流。
记住: 一切特殊情况下的结论,99%的均可通过求解KCL和KVL方程组得到,因此说KCL和KVL方程组及元件伏安式VCR,这三者是求解电路的普适理论。
九、电压源和电流源计算?
电压源与电流源的功率的计算解题思路如下:1、设18V电压源电流为I,方向向下,根据KCL则6V电压源的电流为(I+2),方向向上。2、针对左边的回路,再根据KVL:24I=6+18,解得:I=1(A)。3、6V电压源电流为:I+2=1+2=3A,方向向上,功率为:P1=3×6=18(W)>0电压与电流为非关联正方向,释放功率18W;4、18V电压源:功率为P2=18×1=18(W)>0,电压与电流为非关联正方向,释放功率18W;5、2Ω电阻的电压为2×2=4(V),而2Ω电阻串联2A电流源两端电压为6V,因此电流源两端电压为:6-4=2(V),上正下负。电流源功率:P3=2×2=4(W)>0,电压与电流为关联正方向,电流源吸收功率4W。6、验证:24Ω电阻消耗功率P4=I²×24=1²×24=24(W),2Ω电阻消耗功率P5=2²×2=8(W)。7、总消耗(吸收)=P3+P4+P5=4+24+8=36(W);总释放=P1+P2=18+18=36W,功率平衡。扩展资料:电压源,即理想电压源,是从实际电源抽象出来的一种模型,在其两端总能保持一定的电压而不论流过的电流为多少。电压源具有两个基本的性质:第一,它的端电压定值U或是一定的时间函数U(t)与流过的电流无关。第二,电压源自身电压是确定的,而流过它的电流是任意的。电流源的内阻相对负载阻抗很大,负载阻抗波动不会改变电流大小。在电流源回路中串联电阻无意义,因为它不会改变负载的电流,也不会改变负载上的电压。在原理图上这类电阻应简化掉。负载阻抗只有并联在电流源上才有意义,与内阻是分流关系。
十、电压源电流源和负载中电流的流向?
(1)电流方向的定义是正电荷移动的方向。
(2)电阻是消耗能量的元件,电流通过电阻的方向是电阻电压降低的方向。(3)当电源输出功率时,电源是产生能量的元件,电流通过电源的方向是电压上升的方向。(4)电源内阻就是电阻,性质同(1)。“为什么电阻Ri的电压方向和电压源相反呢”?正是由于电阻与电源的性质相反。推荐阅读