您现在的位置是:主页 > 电流 > 正文

为什么it系统单相接地电流小?

电流 2024-12-11 09:20

一、为什么it系统单相接地电流小?

和it系统相对应的还有tt系统和tn系统,it系统即变压器中性点不接地或经高阻抗,负载的外壳接地;后两种是变压器中性点接地,负载的外壳接地或接保护零。

当发生单相接地时,tt和tn系统因为变压器中性点接地所以短路点到变压器中性点电阻较小,it系统因为变压器中性点不接地所以电阻很大,相比较之下it系统的接地电流要比tt和tn系统要小

二、小电流接地系统发生单相接地时有哪些现象?

小电流接地系统发生单相接地时整个系统将出现零序电压的现象。会立即报警并输出故障信号。

小电流接地系统监控装置的工作原理:在中性点非直接接地电网中通常有以下三种方式,即中性点不接地方式;经消弧线圈接地方式;经电阻接地方式,此类系统在发生单相接地时,由于故障点的电流很小,而且三相之间的线电压基本保持对称,对负荷的供电没有影响,因此,在一般情况下都允许再继续运行1~2小时,而不必立即跳闸,这是采用中性点非直接接地运行的主要优点,但是在单相接地后,其他两相的对地电压要升高 倍,对设备的绝缘造成了威胁,若不及时处理可能会发展为绝缘破坏、两相短路,弧光放电,引起全系统过电压。为了防止故障的进一步扩大,应及时发出信号,以便运行人员采取措施予以消除。

因此,在单相接地时,一般只要求选择性地发出信号,而不必跳闸。但当单相接地对人身和设备的安全有危险时,则应动作于跳闸。

另外一种情况是,当中性点非直接接地系统发生单相接地故障时,接地点将通过接地线路对应电压等级电网的全部对地电容电流。如果此电容电流相当大,就会在接地点产生间歇性电弧,引起过电压,从而使非故障相对地电压极大增加。在电弧接地过电压的作用下,可能导致绝缘损坏,造成两点或多点的接地短路,使事故扩大。为此,我国采取的措施是:当各级电压电网单相接地故障时,如果接地电容电流超过一定数值(35kV电网为10A,10kV电网为20A,3~6kV电网为30A),就在中性点装设消弧线圈,其目的是利用消弧线圈的感性电流来补偿接地故障时的容性电流,就可以减少流经故障点的电流,以致自动熄弧,保证继续供电。

该接地方式因电网发生单相接地的故障是随机的,造成单相接地保护装置动作情况复杂,寻找故障点比较难。消弧线圈采用无载分接开关,靠人工凭经验操作比较难实现过补偿。消弧线圈本身是感性元件,与对地电容构成谐振回路,在一定条件下能发生谐振过电压,给继电保护的功能实现增加了困难。

所以当电缆线路较长、系统电容电流较大时,也可以采用经电阻接地方式,即中性点与大地之间接入一定阻值的电阻。该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。这三种电阻接地方式各有优缺点,要根据具体情况选定。

中性点不接地系统的特点:

在发生单相接地时,全系统都将出现零序电压。

在非故障相的元件上有零序电流,其数值等于本身的对地电容电流,电容性无功功率的方向为由母线流向出线,即零序电流超前零序电压90°。

在故障线路上,零序电流为全系统非故障元件对地电容电流之总和,数值一般较大,电容性无功功率的实际方向为由线路流向母线,即零序电压超前零序电流90°。

三、小接地电流系统发生单相接地故障有哪些特点?

1、接地电流较小。接地点仅流过配电系统除了接地出线外其它出线总电容电流。

2、接地相与其它两相间电压仍保持不变,不必立即切除故障线路。

3、如配电系统电缆出线较多,则接地容性电流会过大,无法分断,此时应改由接地变压器经消弧圈接地,变成大电流接地系统。

四、小电流接地系统中单相接地的故障现象有什么?

小电流接地系统包含两种方式,下面分别进行说明:

1.小电阻接地系统,发生单相接地时,非故障相电压上升为不大于1.732倍相电压,这个与接地电阻大小有关系。

2.谐振接地方式,如果消弧线圈补偿比较好,流过中性点电流接近于0,非故障相电流上升为线电压。如果消弧线圈补偿的不好,则接地电弧不容易熄灭,可能会烧坏设备并引起相间短路,并且如果产生间歇性电弧,则由于非故障相电容积累的自由电荷不断增多,位移电压不断升高,则会出现比较严重的过电压现象。

五、小接地电流系统中发生单相接地故障,系统还能继续运行多久?

小电流接地系统发生单相接地故障时,由于线电压的大小和相位不变(仍对称),而且系统的绝缘又是按线电压设计的,因此允许短时间运行而不立即切除故障,带接地故障运行时间,一般10 kV、35 kV线路允许接地运行不超过2 h,这主要是受电压互感器和消弧线圈带接地允许运行时间的限制。

六、大接地电流系统,单相接地故障特点?

当某一相发生接地故障时,必然产生一个单相接地故障电流,此时检测到的零序电流,是三相不平衡电流与单相接地电流的矢量和。零序电流的形成和计算比较复杂,在电力系统非对称故障分析时,用“对称分量法”,把一个不对称分量分解成“正序”“负序”“零序”三种分量来分别计算,最后合成实际的故障电流。由于各种短路条件的不同,零序阻抗、零序电源、相位的变化等等,短路电流在零线上反应的大小也是不同的,单相接地短路电流在零线上可以小于两相接地和三相接地,也可以大于两相接地和三相接地等等,因为零序电流的不确定性,所以零序电流保护只是一种补充保护,补充其它保护的不足。

七、大电流接地系统单相接地的特点?

大接地电流系统:特点是单相接地时故障无论是瞬间还是永久性的,由于电弧不能自动熄灭,故障回路一律跳闸。优缺点:

• 供电可靠性差(必须增强备用容量的控制切换功能)。

• 瞬间故障电弧通过跳闸完全熄灭(不会出现很 高的间歇性电弧过电压,限制到2.8倍相电压 以下)。

• 单相接地电流大易引起设备损坏或火灾。

• 在中性点及故障点附近会形成危险的跨步电压和接触电压,对人身安全不好。

• 通信干扰大;

• 继电保护选择性好;

• 运行管理简单。

八、小电流接地系统发生单相接地时的电气特征有哪些?

因为是中性点不接地系统,所以特征不是那么明显,因此10千伏电压互感器往往有开口三角形付边,正常时开口三角型电压为0,发生单相接地时,可以检测出电压,这是因为当单相接地时三相电压不平衡接地相电压降低的缘故。

九、求教小电流接地系统发生单相接地时为什么不动作跳闸?

小电流接地系统发生单相接地时的现象有: (1)警铃响,同时发出接地灯窗,接地信号继电器掉牌。

(2)如故障点系高电阻接地,则接地相电压降低,其他两相对地电压高于相电压;如系金属性接地,则接地相电压降到零,其他两相对地电压升为线电压。(3)三相电压表的指针不停摆动,这时是间歇性接地。

十、单相接地电流多大?

变压器铁芯在通过变化磁场传输能量的过程中会感应出电流,当铁芯要求接地时,这部分电流则会通过接地线流向地被称为接地电流(含电容式耦合电流),不接地则会加热铁芯,这种电流是被损耗了的。回路为:初级--铁芯--地;次级--铁芯--地。

6-10KV中性点不接地系统来说,单相接地电容电流应小于30A,对35KV中性点不接地系统来说,单相接地电容电流应小于10A