自耦变压器中电流的计算?
一、自耦变压器中电流的计算?
专家确实讲错了。自耦变压器,应该看做两个元件,一个是变压器,一个是两个串联在一起的电感。
在空载的时候,自耦变压器本身有额定电流的20%的空载电流,在自耦启动时它起作用的。
专家说的输入功率等于输出功率本身是没有问题的,问题在于,他说的功率是有功功率,照他的理论如果自耦变压器不接负载将没有电流流过,实际上是如果把自耦变压器不考虑铁铜和线圈电阻,实际上是有大量的电流流过只是相位和电压不同,基本都是武功,电流的大小和电感和频率有关。
电流不仅与整个回路消耗的有功功率有关,启动时还有大量的无功功率,实际上输入电流的流向N2,还是和N1相同的,只是相位不同,而且不是反向。
在没有超过负荷的时候,可以看做恒压源,所以它N2上的电流是由两部分组成的一部分是和负载并联的并联电流,方向和N1是相同的还有一部分是电压源的输出电流,从电流上看,N1上的电流,N2上的电流,负载的电流,3者不是同相位的,不能简单相加。至于说那个电流更大些还要看负载。
特别是带电机,而且是带重载启动电机,瞬间N1上的电流能达到自耦变压器额定电流的2-4倍,这个时候变压器基本饱和了,电感特性很明显,负载接近于短路,由于有自耦变压器,所以对变压器的冲击就比较小。
在自耦降压启动中,自耦变压器的作用不是保护电机,而是保护电源变压器,将冲击电流减少。
在实际应用中,如果是空载启动或者轻载启动,如果使用自耦变压器,实际上对电源的冲击较星-三角启动要大。
所以出现启动方式的换乱应用的原因就是所谓专家学者不懂电路分析。
在电路分析中电磁装换的时候具体状态,所谓歪嘴和尚教出的徒弟念的都是歪嘴经。
鼠笼式异步电机启动瞬间,需要形成转动力矩,也就是建立扭矩,由于定子的面积不变,扭矩建立需要涉及磁场变化的频率,还有电压,如果频率不变,电压降低0.6,如果还是三角接线,如果是重载,实际启动电流比直接三角启动电流还要增加1.7倍,如果直接启动是7倍电流,自耦启动电流将最大达到10倍,但是由于自耦变压器的移相、限流作用,对电源变压器的冲击电流只会是3-4倍,这个时间比较短可能只有1-5秒,早期50年代无法观察,现在如果用故障录波对不同点进行采样将会看到,所以50年代专家给出的结论以及早期的手册结论都是片面的。
在投自耦变压器的时候应该先投输入端接触器,至少要早1/4~1/2个周波,等自耦变压器建立稳定磁场,再投输出分压接触器,切得时候同时动作,将对整个电网的冲击再减少30%左右。所谓的的变频器,启动的时候频率降低,要克服从静止到运动,形成同样的扭矩,需要做的功和50HZ时相同,由于启动频率低只有几赫兹,所以时间比较长,单位时间的功率只相当直接启动式的1/10,响应的启动电流也只有这接接线式启动电流的1/10,如果额定电流是100A,启动电流是600A,用变频器5HZ启动,启动电流则小于60A.电机启动瞬间需要的电流比较的的原因一个是要建立磁场,一个要克服阻尼,一个是要形成电机的惯量。
如果说启动时S是100VA,那么基本上有功是70W,无功是70Var,至于数据是不是这样,这里只是为了形象的表述而已,具体比例应该看具体电路负载。为大家在不同负载空载,轻载,重载选在那种方式更经济适用作为参考。
二、自耦变压器中的电流是如何?
自耦变压器,应该看做两个元件,一个是变压器,一个是两个串联在一起的电感。在空载的时候,自耦变压器本身有额定电流的20%的空载电流,在自耦启动时它起作用的。
专家说的输入功率等于输出功率本身是没有问题的,问题在于,他说的功率是有功功率,照他的理论如果自耦变压器不接负载将没有电流流过,实际上是如果把自耦变压器不考虑铁铜和线圈电阻,实际上是有大量的电流流过只是相位和电压不同,基本都是武功,电流的大小和电感和频率有关。电流不仅与整个回路消耗的有功功率有关,启动时还有大量的无功功率,实际上输入电流的流向N2,还是和N1相同的,只是相位不同,而且不是反向。
在没有超过负荷的时候,可以看做恒压源,所以它N2上的电流是由两部分组成的一部分是和负载并联的并联电流,方向和N1是相同的还有一部分是电压源的输出电流,从电流上看,N1上的电流,N2上的电流,负载的电流,3者不是同相位的,不能简单相加。至于说那个电流更大些还要看负载。特别是带电机,而且是带重载启动电机,瞬间N1上的电流能达到自耦变压器额定电流的2-4倍,这个时候变压器基本饱和了,电感特性很明显,负载接近于短路,由于有自耦变压器,所以对变压器的冲击就比较小。
在自耦降压启动中,自耦变压器的作用不是保护电机,而是保护电源变压器,将冲击电流减少。在实际应用中,如果是空载启动或者轻载启动,如果使用自耦变压器,实际上对电源的冲击较星-三角启动要大。
所以出现启动方式的换乱应用的原因就是所谓专家学者不懂电路分析。在电路分析中电磁装换的时候具体状态,所谓歪嘴和尚教出的徒弟念的都是歪嘴经。鼠笼式异步电机启动瞬间,需要形成转动力矩,也就是建立扭矩,由于定子的面积不变,扭矩建立需要涉及磁场变化的频率,还有电压,如果频率不变,电压降低0.6,如果还是三角接线,如果是重载,实际启动电流比直接三角启动电流还要增加1.7倍,如果直接启动是7倍电流,自耦启动电流将最大达到10倍,但是由于自耦变压器的移相、限流作用,对电源变压器的冲击电流只会是3-4倍,这个时间比较短可能只有1-5秒,早期50年代无法观察,现在如果用故障录波对不同点进行采样将会看到,所以50年代专家给出的结论以及早期的手册结论都是片面的。
在投自耦变压器的时候应该先投输入端接触器,至少要早1/4~1/2个周波,等自耦变压器建立稳定磁场,再投输出分压接触器,切得时候同时动作,将对整个电网的冲击再减少30%左右。
所谓的的变频器,启动的时候频率降低,要克服从静止到运动,形成同样的扭矩,需要做的功和50HZ时相同,由于启动频率低只有几赫兹,所以时间比较长,单位时间的功率只相当直接启动式的1/10,响应的启动电流也只有这接接线式启动电流的1/10,如果额定电流是100A,启动电流是600A,用变频器5HZ启动,启动电流则小于60A.
电机启动瞬间需要的电流比较的的原因一个是要建立磁场,一个要克服阻尼,一个是要形成电机的惯量。如果说启动时S是100VA,那么基本上有功是70W,无功是70Var,至于数据是不是这样,这里只是为了形象的表述而已,具体比例应该看具体电路负载。为大家在不同负载空载,轻载,重载选在那种方式更经济适用作为参考。
三、315 kw电机自耦变压器启动电流?
315k ww电压器的电流应该是至少要220以上才能够让电机转动
四、为什么自耦变压器启动电流大?
自耦变压器启动电流大原因如下:
当感应电动机处在停止状态时,从电磁的角度看,接到电源去的定子绕组相当于变压器的一次线圈,成闭路的转子绕组相当于变压器被短路的二次线圈;
定子绕组和转子绕组间无电的的联系,只有磁的联系,磁通经定子、气隙、转子铁芯成闭路。当合闸瞬间,转子因惯性还未转起来,旋转磁场以最大的切割速度同步转速切割转子绕组,使转子绕组感应起可能达到的最高的电势,因而在转子导体中流过很大的电流,这个电流产生抵消定子磁场的磁能,就象变压器二次磁通要抵消一次磁通的作用一样。定子方面为了维护与该时电源电压相适应的原有磁通,遂自动增加电流。因为此时转子的电流很大,故定子电流也增得很大,甚至高达额定电流的4~7倍,这就是自耦变压器启动电流大的缘由。
五、自耦变压器原电流会流过负载吗?
当然会,自耦变压器原边也是幅边的一部分,电流是相通的。
六、135kw自耦变压器能承载多少电流?
根据电动机的额定工作电流为基础,轻负荷的整定电流一般设置为额定工作电流,重负荷的整定电流一般设置为额定工作电流1.1倍,自耦降压启动是利用,自耦变压器降压来降低电动机的启动电流,轻负荷利用65%额定电压,重负荷利用85%额定电压,全额定电压启动电流是额定工作电流的5-6倍,若利用65%额定电压,则启动电流是额定工作电流的5-6倍*65%
七、自耦变压器原理图
今天我们将要讨论的主题是自耦变压器原理图。自耦变压器是一种常见的电子元件,它在电路中起着重要的作用。本文将详细介绍自耦变压器的原理,以及其在电子领域中的应用。
什么是自耦变压器?
自耦变压器是一种变压器类型,通过单个线圈上的自感和互感来改变输入电压和输出电压之间的比例。与常规双绕组变压器不同,自耦变压器只有一个线圈,它的一部分同时用作输入和输出线圈。
自耦变压器的原理非常简单,它基于电感的自感和相互感应的原理。通过改变线圈上的接线点,可以实现不同的电压比例。在自耦变压器中,输入和输出电压之间的比例取决于输入和输出线圈之间的匝数比例。
自耦变压器的原理图
下面是一个简单的自耦变压器原理图:
如上图所示,这是一个标准的自耦变压器原理图。它包括一个线圈,线圈上的接线点标有输入和输出。
自耦变压器的工作原理
自耦变压器的工作原理是通过自感和互感来改变输入和输出电压之间的比例。当输入电压应用于自耦变压器的输入端时,电流通过线圈产生自感作用。这个自感作用导致线圈中的磁场,产生互感作用,将一部分能量传递到输出端。
输入和输出线圈之间的匝数比例决定了输入电压和输出电压之间的转换比例。如果输出线圈的匝数较大,输出电压将较低。反之,如果输出线圈的匝数较小,输出电压将较高。
自耦变压器还可以在电路中实现电气隔离,因为只有一个线圈。它在各种电子设备和电源中得到广泛应用,用于控制电压和电流的转换。
自耦变压器的应用
自耦变压器在电子领域有许多应用。以下是其中一些常见的应用:
- 电源供应:自耦变压器可用于调整电源供应的电压。
- 电子变频器:自耦变压器可用于变频器中,用于调整交流驱动器的电源。
- 音频设备:自耦变压器可用于音频设备中,用于阻隔噪音和调整信号级别。
- 变压器耦合放大器:自耦变压器可用于耦合放大器中,用于增强信号放大。
这只是自耦变压器应用的一小部分。它们在各种电子和电力系统中发挥着重要作用。
结论
自耦变压器是一种常见的电子元件,可用于改变输入和输出电压之间的比例。通过自感和互感作用,它实现了电压转换和电气隔离。在各种电子设备和电力系统中,自耦变压器被广泛应用于电源供应、变频器、音频设备和耦合放大器等领域。了解自耦变压器的原理和应用,有助于我们更好地理解电子领域的工作。
希望本文对读者们有所启发,并提供了对自耦变压器的基本了解。谢谢阅读!
八、自耦变压器百分子65的抽头电流多大?
电流和抽头位置没关系。
电流取决于负载(也就是所接的电器)功率大小。抽头决定输出电压。65%处输出电压是输入的65%。220*0.65=143v 接380是247九、自耦变压器的次级与初级的电流方向一样吗?
自耦变压器的次级与初级的电流方向是相反的。
因为副线圈是原线圈的一部分,原、副线圈的感应电动势的方向是相同的。原边电流是由外加电压产生的,方向与电源电压相同。而副线圈的输出电流是由感应电动势产生的,与感应电动势方向相同。
外加电源电压与感应电动势方相反,所以原、副线圈的电流是反向的。
方向相反说明两电流相互抵消一部分。从原理上讲,自耦变压器原、副线圈公共部分导线可以细一些。
十、自耦变压器的原理?
1.自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高. 2.其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压,自耦变压器是自己影响自己。 3.自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,自耦变压器的其余部分称为串联绕组,同容量的自耦变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、电压等级的提高和输送容量的增大,自耦变压器由于其容量大、损耗小、造价低而得到广泛应用.。 原理是COPY的,你就当是滑线式电阻理解就可以,调压啊,自耦降压启动什么